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The three probability variables—of arrest, conviction,
sign, and all are statistically significant. For example,
dicted to lower the crime rate by about .33%.
effect, but it is not statistically significant.
The coefficient on the police per capita variable is somewhat surprising and is a feature of most
studies that seek to explain crime rates. Interpreted causally,
capita increases crime rates by about .4%. (The usual 7 statistic is very large, almost 15.) It is hard to
believe that having more police officers causes more crime. What is going on here? There are at least
two possibilities. First, the crime rate variable is calculated from reported crimes. It might be that, when
there are additional police, more crimes are reported. Second, the police variable might be endogenous
in the equation for other reasons: counties may enlarge the police force when they expect crime rates to
increase. In this case, (13.33) cannot be interpreted in a causal fashion, In Chapters 15 and 16, we will
cover models and estimation methods that can account for this additional form of endogeneity.

The special case of the White test for heteroskedasticity in Section 8-3 gives F = 75.48 and
p-value = .0000, so there is strong evidence of heteroskedasticity. (Technically, this test is not valid if
there is also serial correlation, but it is strongly suggestive.) Testing for AR(1) serial correlation yields
p=—233t=—477, so negative serial correlation exists. The standard errors in brackets adjust
for serial correlation and heteroskedasticity. [We will not give the details of this; the calculations are
similar to those described in Section 12-5 and are carried out by many econometric packages. See
Wooldridge (2010, Chapter 10) for more discussion.] No variables lose statistical significance, but
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