Unit 3 Quiz

You have 2 hours to complete this quiz. There are 52 total points. Please show all your work to receive full credit.

1. *(10 points)* For each of the following terms, provide a definition (one to two sentences). You may find it helpful to use an example.

Term	Definition	[2 points each]
Repeated cross-section		
Non-classical measurement error		
External validity		
Instrumental variable		
Proxy variable		

2. (12 points) Suppose you have detailed self-reported survey data and want to estimate the determinants of depression using the following linear probability model:

 $Pr(Depress) = \beta_0 + \beta_1 Exercise + \beta_2 Female + \beta_3 TVhours + \beta_4 Age + \beta_5 Educ + u,$

where Depress is a binary variable equal to one if the person is experiencing a major depressive episode, Exercise is number of hours of exercise per week, Female is a binary variable equal to one the person is female, TVhours is the number of hours of TV watched per week, Age is age in years, and Educ is years of completed education.

(a) Provide a real-world example of *classical* measurement error in one of the independent variables. What assumption(s) do you make for it to be classical? If the error really is classical, what is the impact on your estimate of that variable's $\hat{\beta}$? [6 points]

Assumption(s):

Example:

Impact on estimate if classical:

(b) Provide an example of reverse causality that might arise in this model. [3 points]

(c) Yolanda hypothesizes that there is a non-linear relationship between age and the likelihood of depression. Explain how you would test whether her hypothesis is correct.

[3 points]

- 3. (12 points) The recent legalization of recreational marijuana in Massachusetts may provide an interesting policy experiment for researchers! Dr. Ong is interested in the impact of marijuana use on high-school drop-out rates. In Massachusetts, possession of marijuana will become legal in 2017, and licenses to sell marijuana will be available in 2018. Suppose that the supply of marijuana will be greatest in counties that already have at least one medicinal marijuana clinic (these clinics will be given preference when applying for licenses). Dr. Ong has the following data from Massachusetts:
 - County-level data on high-school drop-out rates in 2016 and 2018 ($Dropout_{c,y}$, where c is county and y is year)
 - Number of medicinal marijuana clinics by county, as of 2016. $(Clinics_c)$
 - (a) Write a difference-in-differences population model to measure the impact of marijuana legalization on high-school drop-out rates. If you use any new variables, make sure to define them clearly. [6 points]

(b) What assumption(s) do you need to make for your difference-in-differences model to reflect the *causal* impact of legalization on drop-out rates? Explain what each assumption means. You can include a picture if it is helpful.

(c) Suppose that counties with more marijuana clinics are also poorer, and that poorer areas have higher drop-out rates. How would this affect your estimate of the impact of marijuana legalization, if at all? Explain. [3 points] 4. (6 points) Vella and Veerbeek (1998) use longitudinal panel data from the U.S. National Longitudinal Survey of Youth (NSLY) to track working-age men from 1980-1987. They estimate the following fixed-effects model of the impact of being in a union on wages:

 $lwages_{it} = \beta_0 + \beta_1 union_{it} + a_i + u_{it}$

where $lwages_{it}$ is the log of real hourly wages for individual *i* in year *t* and $union_{it}$ is a binary variable equal to 1 if individual *i* in year *t* is a member of a labor union.

They get the following results:

. xtreg lrent	y90 lpop lav	ginc pctstu,f	e			
Fixed-effects Group variable	0	ression		Number o Number o	of obs = of groups =	120
betweer	= 0.9765 n = 0.2173 L = 0.7597			Obs per	group: min = avg = max =	2.0
corr(u_i, Xb)	= -0.1297			F(4,60) Prob > H	=	021110
lrent	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
y90 lpop lavginc pctstu _cons sigma_u sigma_e rho	.3855214 .0722456 .3099605 .0112033 1.409384 .15905877 .06372873 .8616755	.0368245 .0883426 .0664771 .0041319 1.167238	10.47 0.82 4.66 2.71 1.21	0.000 0.417 0.000 0.009 0.232	.3118615 104466 .1769865 .0029382 9254394	.4591813 .2489571 .4429346 .0194684 3.744208
F test that a		(fraction c) F(63, 60) =	6.67			F = 0.0000
i cese chat al	LI U_I 0.	1(00, 00) =	0.01		1100 >	

(a) Interpret the coefficient on $\widehat{\beta}_1$.

[3 points]

(b) Richard suggests that you add race/ethnicity controls to your model of wages and union membership because African-Americans are more likely to be members of labor unions. Should you add these controls? Explain. [3 points]

5. (12 points) At the Fulton Fish Market in New York City, sellers bring in just-caught fish to sell and negotiate prices with buyers. As a result, the average price and quantity sold fluctuate daily. Graddy (1995) collected data on individual transactions over time at the Fulton Fish Market. Consider the following model of demand for fish.

$$lavgprc = \beta_0 + \beta_1 lavgqty + u$$

where lavgprc is the log of the daily average price of fish sold and lavgqty is the log of the daily average quantity of fish sold. The regression results follow:

. regress chil	Ldren educ age	agesq			
Source	SS	df	df MS		Number of obs = 4361
Model Residual Total	12243.0295 9284.14679 21527.1763	4357 2.1	31.00985 3085765 93742577		F(3, 4357) = 1915.20 Prob > F = 0.0000 R-squared = 0.5687 Adj R-squared = 0.5684 Root MSE = 1.4597
children	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
educ age agesq _cons	0905755 .3324486 0026308 -4.138307	.0059207 .0165495 .0002726 .2405942	-15.30 20.09 -9.65 -17.20	0.000 0.000 0.000 0.000	1021830789679 .3000032 .364894 00316520020964 -4.609994 -3.66662

(a) Interpret the magnitude of $\hat{\beta_1}$. That is, what does -0.138 mean?

[3 points]

(b) Graddy estimates a two-stage least squares (2SLS) model by using weather as an instrument for the quantity of fish sold. Specifically, her instrument is the maximum height of waves averaged over the past two days, *wave2*. Explain why this might be a reasonable instrument. [3 points]

(c) Using the estimated 2SLS results below, interpret the coefficient on *ltotqty*. That is, what does -1.176 mean? [3 points]

. ivregress 2	sls children	(educ = frst	half) age	e agesq		
Instrumental v	variables (2S)	LS) regressi	on		Number of obs Wald chi2(3) Prob > chi2 R-squared Root MSE	= 4361 = 5300.22 = 0.0000 = 0.5502 = 1.49
children	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
educ age agesq _cons	1714989 .3236052 0026723 -3.387805	.0531553 .0178514 .0002796 .5478988	-3.23 18.13 -9.56 -6.18	0.001 0.000 0.000 0.000	2756813 .2886171 0032202 -4.461667	0673165 .3585934 0021244 -2.313943

Instrumented: educ Instruments: age agesq frsthalf

(d) Graddy also reports her first-stage results below. Do they raise any concerns about the validity of her instrumental variables strategy? Why or why not? [3 points]

. reg lrent y	90 lpop lavgin	c pcts	tu				
Source	SS	df	MS			Number of obs	= 128
Model Residual Total	12.1080112 1.9501234 14.0581346	4 123 127	.015	700281 854662 693974		F(4, 123) Prob > F R-squared Adj R-squared Root MSE	= 190.92 = 0.0000 = 0.8613 = 0.8568 = .12592
lrent	Coef.	Std. 1	Err.	t	P> t	[95% Conf.	Interval]
y90 1pop	.2622267	.0347		7.54	0.000	.1934151	.3310384
lavginc	.5714461	.0530	981	10.76	0.000	.4663417	.6765504
pctstu	.0050436	.0010	192	4.95	0.000	.0030262	.007061
_cons	5688069	.5348	808	-1.06	0.290	-1.627571	.4899568