EC200: Econometrics and Applications

In-Class Exercise - Inference with Multiple Linear Regression

Using 2018 GSS data, you estimate the following population model:

 $emailhr_i = \beta_0 + \beta_1 childs_i + \beta_2 age_i + \beta_3 hsgrad_i + \beta_4 somecol_i + \beta_5 college_i + \beta_6 postgrad_i + u_i$

Where the variables are defined as follows:

- *emailhr* email hours per week
- *childs* number of children
- *age* age in years
- *hsgrad* 1 if complete high school only, 0 otherwise
- *somecol* 1 if completed some college, 0 otherwise
- *college* 1 if completed college, 0 otherwise
- *postgrad* 1 if completed some postgraduate education, 0 otherwise.

Note that the education binary variables are mutually exclusive: a college graduate would have hsgrad = somecol = postgrad = 0 and college = 1.

-,	=	MS Number of obs ————————————————————————————————————		MS	df	SS	Source
	=) > F		1784.81888	6	10708.9133	Model
0.054	=	quared	R-sq	131.714127	1,403	184794.92	Residual
0.050	=	R-squared	Adj				
11.47	=	: MSE	Root	138.753608	1,409	195503.833	Total
Interval	onf.	[95% Co	P> t	t	Std. Err.	Coef.	emailhr
. 456455	27	361032	0.819	0.23	.2083668	.0477113	childs
027710	3	103274	0.001	-3.40	.0192602	0654925	age
4.213	2	271764	0.085	1.72	1.143132	1.970668	hsgrad
5.89483	9	1.34693	0.002	3.12	1.159198	3.620887	somecol
9.96006	2	5.16998	0.000	6.20	1.220929	7.565025	college
9.82980	5	4.81437	0.000	5.73	1.278366	7.322089	postgrad
5.02500					1.296195	6.127687	

.	regress	emailhr	childs	age	hsgrad	somecol	college	postgrad	
---	---------	---------	--------	-----	--------	---------	---------	----------	--

. regress emailhr childs age

You also estimate the following population model:

```
emailhr_i = \beta_0 + \beta_1 childs_i + \beta_2 age_i + u_i
```

Source	SS	df	MS	Numbe - F(2,		= 1,410 = 4.74
Model Residual	1309.67915 194194.154	2 1,407	654.839575 138.02001	Prob . R-squ	> F ared	- 4.74 = 0.0088 = 0.0067 = 0.0053
Total	195503.833	1,409	138.753608	-	oquarca	= 0.0053 = 11.748
emailhr	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
childs age _cons	2399636 0438551 9.732497	.2088007 .0194919 .9346207	-1.15 -2.25 10.41	0.251 0.025 0.000	6495578 0820915 7.899097	.1696306 0056187 11.5659

1. In words, interpret the coefficient on *childs* from the regression that includes binary education variables. Is it statistically significant at the 5% level? How do you know?

2. Suppose that you want to test the joint significance of the following regression: $emailhr_i = \beta_0 + \beta_1 childs_i + \beta_2 age_i + \beta_3 hsgrad_i + \beta_4 somecol_i + \beta_5 college_i + \beta_6 postgrad_i + u_i$. What is the F-test statistic?

3. Suppose you want to test whether the four binary education variables are jointly significant. What is the null hypothesis? What is the alternate hypothesis? Can you reject the null at the 5% level? What is the F-test statistic? 4. Suppose you want to test whether there is a statistically significant difference in hours spent on e-mail between people who have completed college and people who have completed some postgraduate education. Use the 5% significance level.

You also conducted the following hypothesis tests:

```
. test hsgrad=somecol
(1) hsgrad - somecol = 0
     F(1, 1403) = 4.03
         Prob > F = 0.0448
. test hsgrad=somecol=0
(1) hsgrad - somecol = 0
(2) hsgrad = 0
     F(2, 1403) = 5.29
          Prob > F = 0.0051
. test college=postgrad
(1) college - postgrad = 0
     F(1, 1403) = 0.05
          Prob > F =
                      0.8167
. test college=postgrad=0
(1) college - postgrad = 0
(2) college = 0
     F( 2, 1403) = 21.71
         Prob > F = 0.0000
```

- (a) Write your null hypothesis, alternative hypothesis, and test statistic.
- (b) What is the critical value for this test?
- (c) What is the F-test statistic?