Probability Review SW Chapter 2.1-2.3

EC200: Econometrics and Applications

Learning objectives

- ▶ Understand and use key vocabulary
- ▶ Calculate expected values and variances and apply their properties

Joint distributions

Probability Review (Chapter 2.1-2.3)

1 Random variables

- Discrete distributions
- Continuous distribution functions

2 Features of probability distributions

3 Joint probability distributions

Joint distributions

Key definitions: random variables

- ▶ Random variable: discrete and continuous
- Probability density function
- ▶ Cumulative density function
- ▶ Joint distribution

Joint distributions 000000000

Random variables

Random variable

Represents a possible numerical value from a random experiment:

- Discrete random variable: Takes on no more than a countable number of values.
- Continuous random variable: Can take on any value in an interval possible values measured on a continuum.

Discrete vs. continuous random variables

Discrete

- ▶ Roll a die twice, X is number of times 4 comes up $(X \in 0, 1, 2)$.
- Toss a coin five times, X is the number of heads $(X \in 0, 1, 2, 3, 4, 5)$.

Continuous

- Weight of packages filled by mechanical process
- ► Temperature of cleaning solution
- Time between failures of an electrical component

Probability density function

Let X be a discrete random variable and x be one of the possible values.

• The probability that X takes value x is written as P(X = x) = P(x).

Probability density function

Representation of the probabilities for all possible outcomes.

•
$$0 \le P(x) \le 1$$
 for any value of x

$$\blacktriangleright \sum_{x} P(x) = 1$$

Note that in the discrete case, sometimes called probability <u>distribution</u> function

Definition

Discrete distributions

Probability distribution function: example

Example 1

Consider the following random experiment:

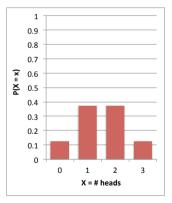
- \blacktriangleright Toss 3 coins.
- Define X as the number of heads.
- What is the probability distribution function of X? That is, show P(x) for all values of x.

Discrete distributions

Prob. distributions 00000 Joint distributions

Probability density function: example

\overline{x}	P(x)
0	P(0) = 1/8 = 0.125
1	P(1) = 3/8 = 0.375
2	P(2) = 3/8 = 0.375
3	P(3) = 1/8 = 0.125



Continuous random variables

- ▶ A continuous random variable has an **uncountable** number of values.
- Because there are infinite possible values, the probability of each individual value is infinitesimally small.
- If X is a continuous random variable, then P(X = x) = 0 for any individual value x.
- Only meaningful to talk about ranges.

Joint distributions

Probability density functions (PDF)

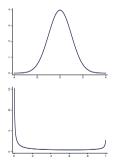
- \blacktriangleright Let X be a continuous random variable
- Its probability density function (PDF), f(x) is a function that lets us compute the probability that X falls within some range of potential values.
- We define f(x) such that the probability that X falls within any interval of values is equal to the *area under the curve* of f(x) over that interval.

Joint distributions

Probability density function properties

Properties of the probability density function (PDF), f(x), of random variable X:

f(x) > 0 for all values of x.



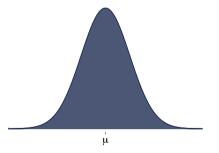
Joint distributions

Probability density function properties

Properties of the probability density function (PDF), f(x), of random variable X:

2 The area under f(x) over all values of the random variable X within its range equals 1.

$$\int_X f(x)dx = 1$$



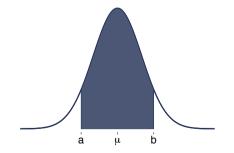
Joint distributions

Probability density function properties

Properties of the probability density function (PDF), f(x), of random variable X:

3 The probability that X lies between two values is the area under the density function graph between the two values:

$$P(a < X < b) = \int_{a}^{b} f(x) dx$$



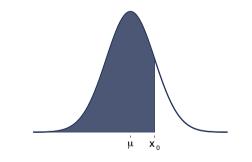
Continuous distribution functions

Cumulative density function (CDF)

Cumulative density function (CDF) Definition

 $F(x_o)$: The area under the probability density function f(x) from the minimum x value up to x_0 :

$$F(x_o) = \int_{x_m}^{x_0} f(x) dx$$



In some cases, $x_m = -\infty$.

Continuous distribution functions

Joint distributions

Relationship between PDF & CDF $% % \left(\mathcal{A}^{n}\right) =\left(\mathcal{A}^{n}\right) \left(\mathcal{A$

Prob. distributions ••••• Joint distributions

Key definitions: features of probability distributions

- ▶ Measures of central tendency: expected value
- ▶ Measures of variability: variance and standard deviation

Note: We refer to E[Y] as the first moment of Y, $E[Y^2]$ as the second moment, $E[Y^3]$ as the third moment, etc.

Expected value discrete random variables

• The expected value of discrete random variable X:

$$E[X] = \mu = \sum_{x} x P(x)$$

- \blacktriangleright Long-run average value of the random variable X over many repeated trials
- Weighted average of possible outcomes, where weights are the probabilities of that outcome
- \blacktriangleright Also called the mean or expectation of X

Joint distributions

Expected value of discrete random variables

Example 2

Recall an experiment in which we flip a coin 3 times. Let X be the number of heads.

What is the expected value of X?

Joint distributions

Definition

Variance/standard deviation

Variance of discrete random variable \boldsymbol{X}

$$\sigma^{2} = E[(X - \mu)^{2}] = \sum_{x} (x - \mu)^{2} P(x)$$

or

$$\sigma^{2} = E[(X - \mu)^{2}] = \sum_{x} x^{2} P(x) - \mu^{2}$$

Standard deviation of discrete random variable X

$$\sigma = |\sqrt{\sigma^2}| = \sqrt{\sum_x (x-\mu)^2 P(x)}|$$

EC200

CH2: Probability Review

20 / 31

Definition

Joint distributions

Linear functions of random variables

Let W = a + bX, where X has mean μ_X and variance σ_X^2 , and a and b are constants:

 \blacktriangleright The mean of W is:

$$\mu_W = E[\mathbf{a} + bX] = \mathbf{a} + b\mu_X$$

 \blacktriangleright the variance of W is:

$$\sigma_W^2 = Var[\mathbf{a} + bX] = b^2 \sigma_X^2$$

 \blacktriangleright the standard deviation of W is:

$$\sigma_W = |b|\sigma_X$$

Joint distributions •000000000

Joint probability distributions

What about when we have two (or more) random variables?

Joint probability distribution

Definition

Express the probability that
$$X = x$$
 and $Y = y$ simultaneously:
 $P(x, y) = P(X = x \cap Y = y)$

Joint distributions 0 = 000000000

Independence

Independence of X and Y

X and Y independent
$$\iff P(x,y) = P(x)P(y)$$

That is, joint probability distribution is the product of their marginal probability functions for all possible values. This can be extended to k random variables

Conditional probability distributions

Conditional probability distribution

Definition

The conditional probability distribution of random variable Y expresses probability that Y = y conditional on X = x:

$$P(y|x) = \frac{P(x,y)}{P(x)}$$

Similarly, $P(x|y) = \frac{P(x,y)}{P(y)}$

Conditional probability distributions: example

Example 3

The probability that the air conditioning breaks at an old factory depends on whether it is a hot day or a cold day.

- X = 1 if air conditioning breaks, 0 otherwise
- Y = 1 if it is a hot day, 0 otherwise
- Suppose P(0,0) = 0.4, P(0,1) = 0.2, P(1,0) = 0.1, P(1,1) = 0.3
- ▶ What is the conditional marginal probability distribution of X if it is a hot day?

Conditional probability distributions: example

	Cool day $(Y = 0)$	Hot day $(Y = 1)$
AC works $(X = 0)$	0.4	0.2
AC breaks $(X = 1)$	0.1	0.3

Joint distributions

Conditional expectation and variance

Conditional expectation and variance

We use conditional distributions to calculate the conditional expectation and conditional variance:

$$E[Y|X = x] = \sum_{i=1}^{k} y_i P(Y = y_i | X = x)$$
$$Var[Y|X = x] = \sum_{i=1}^{k} [y_i - E(Y|X = x)]^2 P(Y = y_i | X = x)$$

Definition

Covariance

- ▶ Let X and Y be discrete random variables with means μ_X and μ_Y
- ▶ The covariance between X and Y is the expected value of the product of their mean deviations

$$Cov(X,Y) = E[(X - \mu_x)(Y - \mu_Y)]$$
$$= \sum_x \sum_y (x - \mu_x)(y - \mu_y)P(x,y)$$

Covariance and independence

- ▶ The covariance measures the direction of the **linear** relationship between two variables (sometimes called "linear dependence").
- If two random variables X and Y are statistically independent, $\Rightarrow Cov(X, Y) = 0.$
- ▶ The converse is not necessarily true. $Cov(X, Y) = 0 \Rightarrow$ statistical independence.

Correlation

We can standardize the covariance between X and Y by dividing by their standard deviations to get the correlation between X and Y.

$$o = Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

 ρ is "unitless," $-1 \leq \rho \leq 1$

1

General rules: Linear sums and differences

Handy relationships to remember:

$$\begin{split} E[aX+bY] &= a\mu_X + b\mu_Y\\ Var(aX+bY) &= a^2\sigma_X^2 + b^2\sigma_Y^2 + 2abCov(X,Y)\\ Var(aX-bY) &= a^2\sigma_X^2 + b^2\sigma_Y^2 - 2abCov(X,Y)\\ Cov(aX+b,cY+d) &= acCov(X,Y) \end{split}$$