Point estimators 00000000 Hypothesis testing 0000000 00000 Comparing means from different populations

Statistics Review Chapter 3, with 2.5/2.6

EC200: Econometrics and Applications

Learning objectives

- ▶ Understand and use key vocabulary (Chapter 3)
- ► Construct confidence intervals
- Conduct one and two-sided hypothesis tests
 - Using z- and t- distributions
 - Interpret *p*-values

Hypothesis testin 0000000 00000 Comparing means from different populations

Statistics Review

- **1** Finite sample properties of estimators
- 2 Confidence intervals
- 3 Hypothesis testing
 - Overview
 - P-values

4 Comparing means from different populations

0000	00000		000000 00000				
Random sampling							
	Simple	random samplir	ıg		Definition		
Method of choosing a set of observations (sample) from a population, such that each member is equally likely to be included. We label each of n observations as $Y_1, Y_2, \ldots Y_n$							
	Indeper	ident and identi	cally distribut	ed (i.i.d.)	Definition		
	When Y	$X_1, Y_2, \dots Y_n$ are	9				
	1 dra	awn from the same	me distribution	n ($identical$), and			
	2 are	independent (c	conditional = r	narginal distributi	on)		

Point estimators Confidence intervals Hypothesis testing Comparing means from different populations

With simple random sampling, the random variables Y_i are *i.i.d.*

Point estimators Confide

Confidence intervals 20000 g Comparing means from different populations 000000

Finite sample properties of estimators

- ► An estimator of a population parameter is a random variable that depends on sample information, whose value approximates this parameter
- ▶ A specific value of that random variable is an estimate.

Example 1

Draw a sample of size n from a population, with parameter $\mu.$ One useful estimator:

$$\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$$

 \overline{Y} is an estimator, and \overline{y} is the estimate. A sampling distribution is the distribution of an estimator.

EC200

 Point estimators
 Confidence intervals
 Hypothesis testing
 Comparing means from different population

 0000000
 000000
 000000
 000000

Law of large numbers

Law of large numbers

Definition

If Y_i , i = 1, ..., n is i.i.d, with $E(Y_i) = \mu_Y$ and if large outliers are unlikely (if $var(Y_i) = \sigma_Y^2 < \infty$), then

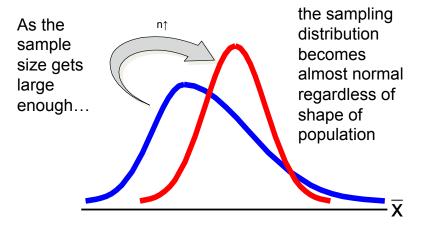
$$\bar{Y} \xrightarrow{p} \mu_Y$$

That is, \overline{Y} "converges in probability" to μ_Y . Alternatively, we can say that \overline{Y} "is consistent" for μ_Y

Point estimators

Confidence intervals 00000 Hypothesis testing 0000000 00000 Comparing means from different populations

Central limit theorem



Hypothesis testing 0000000 00000 Comparing means from different populations

Central limit theorem

Central limit theorem

Definition

- Let X_1, X_2, \ldots, X_n be a set of *n* independent random variables with identical distributions with mean μ and variance σ^2 , and \bar{X} is the mean of these random variables
- As n becomes large, the distribution of

$$Z = \frac{\bar{X} - \mu_X}{\sigma_{\bar{X}}}$$

approaches the standard normal distribution (is "asymptotically normal")

Characteristics of point estimators

We evaluate how good an estimator is based on its bias and efficiency:

- Bias: Difference between the expectation of the estimator and the parameter
- Efficiency: Variance of the estimator how much it differs from the true parameter

Point estimators Confidence interva 000000000 00000	ls Hypothesis testing 0000000 00000	
---	---	--

Bias

Bias

Let $\hat{\theta}$ be an estimator of parameter θ :

The difference between the expectation of the estimator and the parameter

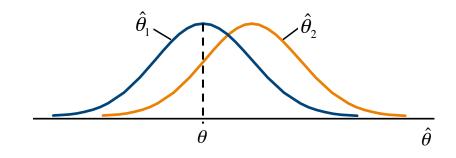
$$Bias(\hat{\theta}) = E[\hat{\theta}] - \theta$$

The bias of an unbiased estimator is 0.

Definition

Unbiasedness

$\hat{\theta_1}$ is an unbiased estimator, $\hat{\theta}_2$ is biased:



 Point estimators
 Confidence intervals
 Hypothesis testing
 Comparing means from d

 00000000
 000000
 000000
 000000

- ▶ Often, there are several unbiased estimators.
- ► Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators of θ . Then, $\hat{\theta}_1$ is more efficient than $\hat{\theta}_2$ if

$$Var(\hat{\theta_1}) < Var(\hat{\theta_2})$$

Confidence limits for μ

Confidence interval:

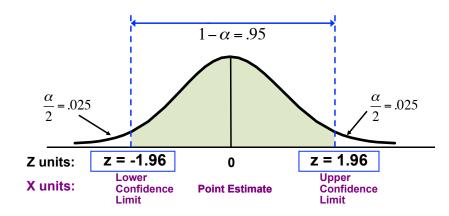
$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

where $z_{\alpha/2}$ is the normal distribution value for the probability of $\alpha/2$ in each tail

If σ unknown, then use the t distribution instead

Finding $z_{\alpha/2}$

Consider a 95% confidence interval:



Point estimators

Confidence intervals 00000

Hypothesis testing 0000000 00000 Comparing means from different populations

CI Example

Example 2

A sample of 11 circuits from a large, normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.

Determine a 95% confidence interval for the true mean resistance of the population.

Point estimators Confidence intervals Hypothesis te

Comparing means from different populations 000000

CI Example

A sample of 11 circuits from a large, normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms. Find a 95% CI for the true mean resistance of the population.

1 List what we know:

$$n = 11 \qquad \bar{x} = 2.20$$

$$\sigma = 0.35 \qquad \alpha = 0.05$$

population normal

2 List what we want to find:

$$\bar{x} \pm z \frac{o}{\sqrt{n}}$$

Point estimators Confidence intervals Hypothesis testing

CI Example

A sample of 11 circuits from a large, normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms. Find a 95% CI for the true mean resistance of the population.

3 Find the right value of z_{α/2}: α = 0.05 ⇒ z_{0.05/2} ⇒ P(Z < z_{0.025}) = 0.975 ⇒ z_{0.025} = 1.96
4 Plug in remaining values: 95%CI = 2.20 ± 1.96 0.35 √255

$$\sqrt{11}$$

= 2.20 ± 0.2068
1.9932 < μ < 2.4068

Hypothesis testing •••••••

Overview

Concepts of hypothesis testing

A hypothesis is a claim (assumption) about a population parameter:

- One sample: The mean monthly cell phone bill in Vermont is $\mu = 52 .
- Two sample: The mean monthly cell phone bill in Vermont equals the mean monthly cell phone bill in Massachusetts.

	Hypothesis testing 000000 00000	
Overview		

Setting up hypotheses

- ▶ Null hypothesis (H_0) states the assumption (numerical) to be tested
- ▶ Alternative hypothesis (H_1) is the "opposite" of the null
- Determine whether there is enough evidence to reject the null hypothesis.
- ► Example: The average number of TV sets in U.S. homes equals three $(H_0: \mu = 3, H_1: \mu \neq 3)$.

One-tail tests

In many cases, the alternative hypothesis focuses on one particular direction.

▶ Does fuel additive *increase* gas mileage?

 $\begin{array}{l} H_0: \mu \leq 10.5 \\ H_1: \mu > 10.5 \end{array}$

Upper-tail test since alternative hypothesis focused on upper tail.

▶ Does cholesterol drug *lower* LDL levels from average of 145?

 $H_0: \mu \ge 145$ $H_1: \mu < 145$ Lower-tail test since alternative hypothesis focused on lower tail.

Two-tail tests

Sometimes, we don't have a specific direction in mind.

▶ Were average U.S. stock market returns affected by Hurricane Katrina, compared to their usual average of 4%?

$$H_0: \mu = 4$$
$$H_1: \mu \neq 4$$

Two-tailed test since we reject if stock returns are very high or very low

Level of significance, α

- Significance level defines the unlikely values of the sample statistic, the rejection region, if the null hypothesis is true
- ► Designated by α (level of significance) usually $\alpha = 0.01, 0.05, 0.10$
- Selected by researcher at beginning
- ▶ Determines the critical value of the test

Step-by-step

- **1** Set up H_0 and H_1
- **2** Determine *t*-statistic:

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

3 Compare test statistic to critical value(s) c, depends on α and one vs. two-sided test

a Upper tail: Reject H_0 if t > c

b Lower tail: Reject H_0 if t < -c

c Two tailed: Reject H_0 if |t| > c

4 Reject or do not reject H_0

Test statistics and critical values

We essentially "convert" our estimate to the t-distribution:

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

If we know σ or as *n* gets large, the *t* distribution converges to a standard normal (z) distribution.

	Hypothesis testing 0000000 •0000	Comparing means from different populations 000000
P-values		

P-value

Definition

The largest significance level at which we could carry out a hypothesis test and still fail to reject the null hypotheses.

- ▶ Also called "observed level of significance"
- Smallest value of α for which we can reject H_0

Confidence intervals 00000 Hypothesis testing

Comparing means from different populations

P-values

Example: Hypothesis test for mean

Example 3

A phone industry manager things that customer monthly cell phone bills have increased and now average over \$52 per month.

- ▶ The company wishes to test this claim, so it surveys 150 customers.
- ▶ The average phone bill is \$53.10 per month, with a standard deviation of \$10.
- ► Test the null hypothesis that bills have not increased at the 5% level.

Example: Hypothesis test for mean

1 Write down what we know:

•
$$\mu_0 = 52 \ s = 10, \ n = 150$$

$$\sim \alpha = 0.5, \, \bar{x} = 53.1$$

2 Set up hypotheses:

•
$$H_0: \mu \le 52$$

• $H_1: \mu > 52 \rightarrow what manager wants to prove$

▶ This is an *upper* tail test

Example: Hypothesis test for mean

- **3** Since we have a upper-tail test, we will reject if we have a t-test statistic greater than t_{α} .
- **4** Decision rule: Reject H_0 if $t = \frac{\bar{x} \mu_0}{s/\sqrt{n}} > 1.96$
- **5** Reject or do not reject:

$$z = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{53.1 - 52}{10/\sqrt{150}} = 1.347$$

DO NOT REJECT H_0

Calculate the p-value

- **3** Convert \bar{x} to test statistic $\Rightarrow 1.347$
- \blacksquare Calculate *p*-value

$$P(Z > 1.347) = 1 - F(1.35) = 1 - 0.9115$$

= 0.0885

5 Do not reject, as $\alpha = 0.05 < 0.0885 = p$. Can reject only at significance level of 0.0885 or higher.

Difference between two means

- We may want also want to compare the means of two different population distributions.
 - Do average study hours differ between first-year and upper-year students?
 - Does a new drug lower blood pressure better than a placebo?
- ▶ All intuition is the same, with modest changes.

Hypothesis testing 0000000 00000 Comparing means from different populations 00000

Difference between two means

• Now we test
$$H_0: \mu_1 - \mu_2 = d_0$$
 vs $H_1: \mu_1 - \mu_2 \neq d_0$

• Often $d_0 = 0$ because we want to know if there is a difference. We collect information on \bar{X}_1 and \bar{X}_2 , along with s_1 and s_2

Difference between two means

- Because these are drawn from separate populations, they are independent random variables.
- CLT: $\bar{Y}_1 \sim N(\mu_1, \sigma_1^2/n_1)$ and $\bar{Y}_2 \sim N(\mu_2, \sigma_2^2/n_2)$
- Since independent: $\bar{Y}_1 - \bar{Y}_2 \sim N((\mu_1 - \mu_2), (\sigma_1^2/n_1) + (\sigma_2^2/n_2))$
- ▶ But, we don't know σ_1 or σ_2 !

Hypothesis testing 0000000 00000 Comparing means from different populations 000000

Difference between two means

For our purposes, we will use the following estimator of the standard error of the difference between these two independent random variables:

Definition 4

$$SE(\bar{Y}_1 - \bar{Y}_2) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Confidence intervals 00000 Hypothesis testing 0000000 00000 Comparing means from different populations $\circ \circ \circ \circ \circ \circ$

Difference between two means

Now we can calculate a t-statistic!

Definition 5

$$t = \frac{(\bar{Y}_1 - \bar{Y}_2) - d_0}{SE(\bar{Y}_1 - \bar{Y}_2)}$$
$$t = \frac{(\bar{Y}_1 - \bar{Y}_2) - d_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

1

Point estimators

Hypothesis testing 0000000 00000

- **1** Finite sample properties of estimators
- 2 Confidence intervals
- 3 Hypothesis testing
 - Overview
 - P-values
- **4** Comparing means from different populations