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Learning objectives

▶ Set up appropriate equations to estimate relationship between two variables
using OLS

▶ Interpret intercept and slope coefficients for simple linear regression
▶ Define and calculate residuals
▶ Calculate measures of fit, including R2, ESS, TSS, SSR, and SER
▶ Understand underlying assumptions for estimation of β0 and β1



Linear Regression



Overview of linear models

What is the relationship between height and income?



Overview of linear models
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Overview of linear models

Several tools to determine the linear relationship between two variables:

▶ Scatter plots (visual)
▶ Covariance/correlation coefficient



Regression analysis

We use regression analysis to...

▶ Predict the value of a dependent variable based on the value of at least one
independent variable.

▶ Explain relationship between changes in independent variable and changes
in dependent variable.

Dependent variable: Variable we wish to explain (endogenous variable)
Independent variable: Variable we use to explain dependent variable
(exogenous variable)



Definition of the simple regression model

▶ We can relate y to x with the simple linear regression model:

y = β0 + β1x+ u,

▶ Assume true in population of interest.



Components of population model

y = β0 + β1x+ u

▶ u: error term or disturbance. Other factors that might affect y
▶ β0: intercept parameter
▶ β1: slope parameter

Our goal: get good estimates of β0 and β1



Changes in x, holding u fixed

Ceteris paribus: Holding all other things equal

y = β0 + β1x+ u,

all other factors that affect y are in u. We want to know how y changes when x
changes, holding u fixed.



Changes in x, holding u fixed

▶ Let ∆ denote “change.”
▶ Holding u fixed means ∆u = 0. So

∆y = β1∆x+∆u
= β1∆x when ∆u = 0.

▶ This equation effectively defines β1 as a slope, with restriction ∆u = 0.



How does height affect income?

Example 1 (Height and Income)
income = β0 + β1height+ u

where u contains somewhat “nebulous” factors

∆income = β1∆height when ∆u = 0



Example: Relationship between height and income
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▶ Data from 2000 NSLY on height (in inches) and annual income (in thousands)
▶ Estimate a regression line - use Stata because n = 12, 016



Deriving OLS



Deriving the ordinary least squares estimates

▶ Given data on x and y, how can we estimate the population parameters, β0
and β1?



Deriving the ordinary least squares estimates

▶ Plug any observation into the
population equation:

yi = β0 + β1xi + ui

where the i subscript indicates a
particular observation.

▶ We observe yi and xi, but not ui.



Deriving the ordinary least squares estimates

We choose β̂0 and β̂1 to minimize the mean squared error:

n∑
i=1

(Yi − β0 − β1Xi)2



Deriving the ordinary least squares estimates

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=

Sample Covariance(xi, yi)
Sample Variance(xi)

β̂0 = ȳ− β̂1x̄



Deriving the ordinary least squares estimates

Sample variance of the xi cannot be zero, which only rules out the case where
each xi is the same value.

However, this is very rare!



Deriving the ordinary least squares estimates

▶ Define a fitted value for each data point i as

ŷi = β̂0 + β̂1xi

We have n of these. It is the value we predict for yi given that x has taken on
the value xi.

▶ The mistake we make is the residual:

ûi = yi − ŷi = yi − β̂0 − β̂1xi,

and we have n residuals.



Example: height and income

.

.

. reg income height_in
Source SS df MS Number of obs = 12016

F( 1, 12014) = 247.83
Model 125382.214 1 125382.214 Prob > F = 0.0000

Residual 6078127.43 12014 505.920379 R-squared = 0.0202
Adj R-squared = 0.0201

Total 6203509.64 12015 516.313745 Root MSE = 22.493

income_2000 Coef. Std. Err. t P>|t| [95% Conf. Interval]

height_inch .7949441 .0504963 15.74 0.000 .6959632 .893925
_cons -36.61049 3.388627 -10.80 0.000 -43.25275 -29.96823



Example: height and income

̂income = −36.61+ 0.79 height
n = 12016

▶ How much is an additional inch of height worth?
▶ What is the predicted income for someone who is six feet tall?
▶ Consider person 898, who is 64 inches tall and earned 21k in 2000. What is

her residual?



Measures of Fit



Goodness-of-fit

We define the total sum of squares, estimated sum of squares, and residual sum
of squares:

yi = ŷi + ûi

TSS =
n∑
i=1

(yi − ȳ)2

ESS =
n∑
i=1

(ŷi − ȳ)2

SSR =
n∑
i=1

û2i



Properties of OLS on any Sample of Data

▶ Assuming TSS > 0, we can define the fraction of the total variation in yi that
is explained by xi (or the OLS regression line) as

R2 =
ESS
TSS = 1− SSR

TSS
▶ Called the R-squared of the regression.

0 ≤ R2 ≤ 1

Do not fixate on R2. Having a “ high” R-squared is neither necessary nor sufficient
to infer causality.



Standard error of the regression (SER)

We can estimate the variance of the regression

σ̂2 = s2e =
∑n

i=1 û2i
n− 2 =

SSR
n− 2

▶ Divide by n− 2 because we’ve used up two d.f: one on β̂0 and one on β̂1.
▶ We call se =

√
s2e the standard error of the regression (SER)



Assumptions



Three least squares assumptions

1. Zero conditional mean: E[ui|Xi] = 0
▶ Holds in RCT setting - we try to approximate this
▶ Same as saying that ui and Xi are uncorrelated

2. Xi, Yi are i.i.d.
3. Large outliers are unlikely (finite kurtosis)

Under these three
assumptions, β̂1 is an
unbiased estimator of
β1.



Zero conditional mean

▶ x and u have distributions in the population.
▶ For example, if x = height then, in principle, we could figure out its

distribution in the population of adults over, say, 30 years old.
▶ Suppose u is gender (or childhood nutrition, or SES, or confidence, etc.).

Assuming we can measure u, it also has a distribution in the population.
▶ We must restrict how u and x relate to each other in the population.



E(u) = 0

▶ First, we make a simplifying assumption that is without loss of generality: the
average, or expected, value of u is zero in the population:

E(u) = 0

where E(·) is the expected value (or averaging) operator.
▶ Normalizing “nutrition,” or “ability,” to be zero in the population should be

harmless. It is.



Adjusting the intercept

▶ The presence of β0 in

y = β0 + β1x+ u

allows us to assume E(u) = 0. If the average of u is different from zero, we
just adjust the intercept, leaving the slope the same. If α0 = E(u) then we
can write

y = (β0 + α0) + β1x+ (u− α0),

where the new error, u− α0, has a zero mean.
▶ New intercept is β0 + α0. But slope, β1, has not changed.



Definition of the simple regression model

KEY QUESTION: How do we need to restrict the dependence between u and x?

▶ We could assume u and x uncorrelated in the population:

Corr(x,u) = 0

▶ Zero correlation actually works for many purposes, but it implies only that u
and x are not linearly related. Ruling out only linear dependence can cause
problems with interpretation and makes statistical analysis more difficult.



Definition of the simple regression model

▶ An better assumption involves the mean of the error term for each slice of
the population determined by values of x:

E(u|x) = E(u), all values x,

where E(u|x) means “the expected value of u given x.”
▶ We say u is mean independent of x.
▶ How realistic is this?



Definition of the simple regression model

▶ Suppose u is “ability” and x is years of education. We need, for example,

E(ability|x = 8) = E(ability|x = 12) = E(ability|x = 16)

so that the average ability is the same in the different portions of the
population with an 8th grade education, a 12th grade education, and a
four-year college education.



Zero conditional mean assumption

▶ Combining E(u|x) = E(u) (the substantive assumption) with E(u) = 0 (a
normalization) gives

E(u|x) = 0, all values x

▶ Called the zero conditional mean assumption



Zero conditional mean assumption

▶ Because the expected value is a linear operator, E(u|x) = 0 implies

E(y|x) = β0 + β1x+ E(u|x) = β0 + β1x,

which shows the population regression function is a linear function of x.



Definition of the simple regression model



Definition of the simple regression model

▶ The straight line in the previous graph is the PRF, E(y|x) = β0 + β1x. The
conditional distribution of y at three different values of x are superimposed.

▶ For a given value of x, we see a range of y values: remember, y = β0 + β1x+ u,
and u has a distribution in the population.



Sampling distributions of β̂1 and β̂0

▶ Recall the CLT tells us that as n → ∞, X̄ ∼ N(µ, σ2
x̄)

▶ If three assumptions, hold the sampling distributions of β̂1 and β̂0 are
normal!

▶ Because estimators get closer and closer to true values (variances go to 0),
they are consistent

▶ Because of CLT, as n → ∞, β̂1 ∼ N(β1, σ2
β̂1
)

▶ Usually, we’re quite happy with n > 100



Sampling distributions of β̂1 and β̂0

For large n, β̂1 ∼ N(β1, σ2
β̂1
)

σ2
β̂1

= 1
n
var[(Xi−µX)ui]

var(Xi)2
Larger variance in X → smaller variance in β1

Smaller variance in u → smaller variance in β1
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