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Learning objectives

▶ Create hypotheses about slope coefficients and test them using β̂1 and its
standard error.

▶ Correctly interpret the results of hypothesis tests
▶ Calculate confidence intervals for β1
▶ Take binary regressors in stride (and interpret them correctly)
▶ Understand the implications of heteroskedasticity and correct your standard

errors
▶ Know and apply the Gauss-Markov theorem to understand the circumstances

under which OLS is BLUE.



Where we are going

We want to learn about the slope of the population regression line. We have data
from a sample, so there is sampling uncertainty.

▶ State the population object of interest
▶ Provide an estimator of this population object
▶ Derive the sampling distribution of the estimator (this requires certain

assumptions). In large samples, it will be normal by the CLT.
▶ Find the standard error (SE) of the estimator
▶ Construct t-statistics (for hypothesis tests) and confidence intervals.



Testing hypotheses about one
coefficient



The sampling distribution of β̂1

Under the Least Squares Assumptions, for n large,β̂1 is approximately distributed,

β̂1 ∼ N(β1,
σ2
v

n(σ2
X)

2 ), where vi = (Xi − µX)ui)

Note: We won’t computer variances by hand, but the intuition is useful!



Hypothesis testing: general setup

▶ Null hypothesis and two-sided alternative:

H0 : β1 = β1,0 vs H1 : β1 ̸= β1,0

▶ Null hypothesis and one-sided alternative:

H0 : β1 = β1,0 vs H1 : β1 < β1,0

where β1,0 is the hypothesized value of β1 under the null.



General approach

▶ In general:

t = estimator - hypothesized value
SE of estimator

where SE of the estimator is the square root of an estimate of the variance of
the estimator.

▶ For testing Ȳ, recall that t = Ȳ− µY,0
sy/

√
n

▶ For testing β1,

t = β̂1 − β1,0

SE(β̂1)



Testing H0β1,0 = 0

▶ Construct your t-statistic:

t = β̂1 − β1,0

SE(β̂1)
▶ Reject at α significance level if |t| > cα/2
▶ In practice, almost always two-tailed tests.
▶ This procedure relies on large-n approximately that β̂1 is normally

distributed, requires at least n > 30 for CLT to kick in

Level α cα/2
1% 0.01 2.58
5% 0.05 1.96
10% 0.10 1.645



Choosing a significance level

▶ We usually fix α as the significance level of our test, or type I error, the
probability of falsely rejecting the null hypothesis.

▶ We usually set α = 0.05. So 5% of the time, we’ll reject the null when it’s
actually true, a “false positive”

▶ Is that too high? Why not make α super, super small?



Choosing a significance level

▶ The smaller is α, the harder it is to reject H0. So we’ll see fewer fase
positives, but we’ll also see more false negatives!

▶ Power is the probability that we reject the null when the alternate
hypothesis is true, equal to 1− β, where β is probability of type II error

▶ There is a tradeoff between significance, α, and power, β.
▶ We want to strike a good balance!



Conducting a hypothesis test

Is mother’s education associated with birthweight?

.

.

. regress bwght motheduc,robust
Linear regression Number of obs = 1,387

F(1, 1385) = 7.44
Prob > F = 0.0065
R-squared = 0.0048
Root MSE = 20.318

Robust
bwght Coef. Std. Err. t P>|t| [95% Conf. Interval]

motheduc .5921371 .2170622 2.73 0.006 .1663308 1.017943
_cons 111.0482 2.849696 38.97 0.000 105.458 116.6384

.



Testing H0 : β1,0 = a

▶ What if we have more general hypotheses?
▶ Null hypothesis H0 : β1 = a
▶ Just adjust t-statistic!

t = estimator - hypothesized value
SE of estimator

β̂1 − a
SE(β̂1)



Economic vs. statistical significance

▶ If statistically significant, examine magnitude. Does it actually matter?
▶ Statistically significant ̸= economically or practically significant!

▶ If a variable is statistically and economically important but has the “wrong”
sign, the regression model might be misspecified

▶ If a variable is statistically insignificant at the usual levels (10%, 5%, or 1%),
may want to exclude it from the regression
▶ Not necessarily, though, when samples are small



Confidence Intervals for β1



Confidence Intervals for β1

Recall, that a 95% confidence interval is, equivalently:

▶ The set of points that cannot be rejected at the 5% significance level;
▶ A set-valued function of the data (an interval that is a function of the data)

that contains the true parameter value 95% of the time in repeated samples.

Because the t-statistic for β1 is distributed N(0, 1) in large samples, construction
of a 95% confidence for β1 is just like the case of the sample mean!

95% confidence interval for β1: β̂1 ± 1.96SE(β̂1)



Regression when X is binary



Regression when X is binary

Sometimes a regressor is binary:

▶ X = 1 if small class size, X = 0 if not
▶ X = 1 if female, X = 0 if male**
▶ X = 1 if treated (experimental drug),X = 0 if not

Binary regressors are sometimes called dummy variables.

So far, β1 has been called a “slope,” but that doesn’t make sense if X is binary.

*Gender is not binary, but it is binary in many, many data sets. Just another example of how data
availability shapes our understanding of the world!



Interpreting a binary X

Recall the population model: Yi = β0 + β1Xi + ui

When Xi = 0, Yi = β0 + ui

▶ The mean of Yi is β0
▶ That is, E[Yi|Xi] = 0 = β0

When Xi = 1, Yi = β0 + β1 + ui

▶ The mean of Yi is β0 + β1

▶ That is, E[Yi|Xi] = 0 = β0 + β1

Therefore, β1 = E(Yi|Xi = 1)− E(Yi|Xi = 0), which is the population difference in
group means.



Interpreting a binary X

Is sex associated with birthweight?

.

.

. regress bwght male,robust
Linear regression Number of obs = 1,388

F(1, 1386) = 7.27
Prob > F = 0.0071
R-squared = 0.0052
Root MSE = 20.308

Robust
bwght Coef. Std. Err. t P>|t| [95% Conf. Interval]

male 2.94235 1.091232 2.70 0.007 .801704 5.082995
_cons 117.1669 .7882632 148.64 0.000 115.6206 118.7132

.



Interpreting a binary X

Is sex associated with birthweight?

ˆbwght = 117.17+ 2.94male

Average birthweight of female babies:

E[bwght|male = 0] = 117.17 ounces

Average birthweight of male babies:

E[bwght|male = 1] = 117.17+ 2.94 = 120.11 ounces



Heteroskedasticity and
homoskedasticity



Heteroskedasticity and homoskedasticity

1. WTF?
2. Consequences of heteroskedasticity
3. Implications for computing standard errors

What do these two terms mean?

If var(u|X = x) is constant, then u is said to be homoskedastic. Otherwise, u is
heteroskedastic.



Heteroskedasticity in a picture

▶ The variance of u is constant (in fact here, E(u|X = x) = 0 (least square
assumption 1 satisfied!)

▶ The variance of u does not depend on X



Homoskedasticity in a picture

▶ The variance of u not constant
▶ The variance of u does depend on X



Heteroskedasticity in a picture

▶ The variance of u not constant
▶ The variance of u does depend on X



Does heteroskedasticity affect β̂1?

Recall the three least squares assumptions:

1. E(u|X = x) = 0
2. (Xi, Yi), i = 1, ,n are i.i.d.
3. Large outliers are rare

Heteroskedasticity and homoskedasticity concern var(u|X = x).

Because we have not explicitly assumed homoskedastic errors, we have implicitly
allowed for heteroskedasticity.



So who cares?

As we just saw, heteroskedasticity does not affect point estimates of β1. But, as
you might expect, it does affect your standard errors!

The previously estimated standard errors are unbiased only under
homoskedastic. We will adjust our standard errors to reflect heteroskedasticity,
but only in statistical packages. We will call them heteroskedasticity-robust
standard errors, because they are valid whether or not the errors are
heteroskedastic.



Heteroskedasticity-robust standard errors in Stata

.

. regress bwght cigs
Source SS df MS Number of obs = 1,388

F(1, 1386) = 32.24
Model 13060.4194 1 13060.4194 Prob > F = 0.0000

Residual 561551.3 1,386 405.159668 R-squared = 0.0227
Adj R-squared = 0.0220

Total 574611.72 1,387 414.283864 Root MSE = 20.129

bwght Coef. Std. Err. t P>|t| [95% Conf. Interval]

cigs -.5137721 .0904909 -5.68 0.000 -.6912861 -.3362581
_cons 119.7719 .5723407 209.27 0.000 118.6492 120.8946

.



Heteroskedasticity-robust standard errors in Stata

.

.

. regress bwght cigs,robust
Linear regression Number of obs = 1,388

F(1, 1386) = 34.29
Prob > F = 0.0000
R-squared = 0.0227
Root MSE = 20.129

Robust
bwght Coef. Std. Err. t P>|t| [95% Conf. Interval]

cigs -.5137721 .0877334 -5.86 0.000 -.6858767 -.3416675
_cons 119.7719 .5745494 208.46 0.000 118.6448 120.899

.



Heteroskedasticity: the bottom line

▶ If the errors are either homoskedastic or heteroskedastic and you use
heteroskedastic-robust standard errors, you are OK

▶ If the errors are heteroskedastic and you use the homoskedasticity-only
formula for standard errors, your standard errors will be wrong
▶ Could be too big or too small!

▶ The two formulas coincide (when n is large) in the special case of
homoskedasticity

▶ So, you should always use heteroskedasticity-robust standard errors.



Gauss-Markov Theorem



The Extended Least Squares Assumptions

Consider our three LS assumptions (needed for unbiasedness):

1. E(u|X = x) = 0
2. (Xi, Yi), i = 1, ,n are i.i.d.
3. Large outliers are rare

Plus, one more!
4. u is homoskedastic



Gauss-Markov Theorem

Under these four extended LS assumptions, β̂1 has the smallest variance among
all linear estimators (estimators that are linear functions of Y1, ..., Yn).

This is the Gauss-Markov theorem

Under the GM theory, OLS estimators are BLUE:

▶ Best
▶ Linear
▶ Unbiased
▶ Estimators



OLS limitations

▶ Homoskedasticity often doesn’t hold (homoskedasticity is special)
▶ The result is only for linear estimators – only a small subset of estimators

▶ If we know nature of heteroskedasticity, can model it with weighted least
squares, which is more efficient

▶ if we have a lot of outliers, then least absolute deviations (LAD) estimators will
be more efficient

In most applied regression analysis, we use OLS - so that is what we will do, too!
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