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Omitted variable bias
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Learning objectives

I Just go to town on some multiple linear regression - implementing and interpreting

I Deepen our understanding of omitted variable bias

I Calculate and interpret a new measure of fit, the adjusted R2

I Update our knowledge of least square assumption and the sampling distribution of

the OLS estimator in the case of multiple independent variables



Multiple regression analysis



Definition of the multiple linear regression model

Explains y in terms of variables x1, x2, ... , xk



Motivation for multiple linear regression

I Incorporate more explanatory factors into the model

I Explicitly hold fixed other factors that otherwise would be in

I Allow for more flexible functional forms

Example: Wage equation



Example: Average test scores and per student spending

Why would we include average family income in this regression?



Example: Family income and family consumption

I Why would we include average family income in this regression?

I Model has two explanatory variables: income and income squared

I Consumption is explained as a quadratic function of income

I Be careful when interpreting the coefficients!

∆cons

∆inc
≈ β1 + 2β2inc (1)



OLS estimation of multiple regression model

Same idea: minimize sum of squared residuals

ûi = yi − β̂0 − β̂1xi1 − β̂2xi2 − ...− β̂kxik (2)

min
n∑

i=1

ûi
2 (3)

We will use statistical packages to carry out this calculation



Interpretation of the OLS model

βj =
∆y

∆xj
(4)

βj is how much the dependent variable changes if the jth independent variable

changes, holding constant (or controlling for) all other independent variables

I The multiple linear regression model holds the values of other explanatory

variables fixed even if they are correlated with the other variables (ceteris paribus)

I βj is the partial effect of Xj on Y , holding all other variable fixed.

I Still assume unobserved factors do not change if the explanatory variables are

changed



Example: Determinants of college GPA

Let’s look at the relationship between high school and college GPA, controlling for test

scores.

What predicts college GPA?

Source: Christopher Lemmon, who surveyed 194 MSU students, in Fall 1994. (Wooldridge)



Example: Determinants of college GPA

We can set up the following population multiple regression model

colGPAi = β0 + β1hsGPAI + β2ACTI + ui (5)



Example: Determinants of college GPA

. regress colGPA hsGPA ACT

Source SS df MS Number of obs = 141

F(2, 138) = 14.78

Model 3.42365506 2 1.71182753 Prob > F = 0.0000

Residual 15.9824444 138 .115814814 R-squared = 0.1764

Adj R-squared = 0.1645

Total 19.4060994 140 .138614996 Root MSE = .34032

colGPA Coef. Std. Err. t P>|t| [95% Conf. Interval]

hsGPA .4534559 .0958129 4.73 0.000 .2640047 .6429071

ACT .009426 .0107772 0.87 0.383 -.0118838 .0307358

_cons 1.286328 .3408221 3.77 0.000 .612419 1.960237



Example: Determinants of college GPA

Estimated equation (or OLS regression line):

ĉolGPA = 1.29 + 0.452ĥsGPA + 0.0094ACT (6)

I Interpretation: Holding ACT fixed, another point on high school grade point

average is associated with another 0.453 points on college grade point average

I Or: If we compare two students with the same ACT, but the hsGPA of student A

is one point higher, we predict student A to have a colGPA that is 0.453 points

higher than that of student B



Omitted variable bias



Omitting relevant variables: the simple case

Let’s work through some theory!

We have a true population model, which really needs x1 and x2:

y = β0 + β1x1 + β2x2 + u (7)

But, we estimate an OLS regression line using only x1

ỹ = β̃0 + β̃1x1 + ũ (8)



Omitted variable bias

Assume a linear relationship between x1 and x2

x2 = δ0 + δ1x1 + v (9)

Plug in x2:

y = β0 + β1x1 + β2x2 + u (10)

y = β0 + β1x1 + β2(δ0 + δ1x1 + v) + u (11)

= (β0 + β2δ0) + (β1 + β2δ1)x1 + (β2v + u) (12)

Conclusion: All estimated coefficents will be biased!



Example: Omitting ability in a wage equation

wage = β0 + β1educ + β2abil + u (13)

abil= δ0 + δ1educ + v (14)

wage = (β0 + β2δ0) + (β1 + β2δ1)educ + (β2v + u) (15)

The return to education β1 will be overestimated because β2δ1 > 0 . It will look as if

people with many years of education earn very high wages, but this is partly due to the

fact that people with more education are also more able on average.

When is there no omitted variable bias?

I If the omitted variable is irrelevant (β2 = 0)

I If the omitted variable is uncorrelated (δ1 = 0)



Signing the direction of the bias

I With one omitted variable, we can sign the bias if we know the direction of β2

and δ1

I Conditional on x1 and x2, we can compute E [β̃1]

E [β̃1] = β1 + β2δ̃1 (16)

I Note that the sign of δ̃1 is the same as the sign of Cov(xi1, xi2).

corr(x1, x2) > 0 corr(x1, x2) < 0

β2 > 0 Positive bias Negative bias

β2 < 0 Negative bias Positive bias



OBV: More general cases

We can extend this intution when we add more independent variables:

y = β0 + β1x1 + β2x2 + β3x3 + u (17)

ỹ = β̃0 + β̃1x1 + β̃2x2 (18)

I No general statements possible about direction of bias

I Can assume one regressor uncorrelated with others to make analysis tractable



Measures of fit



SER and RMSE

As in regression with a single regressor, the SER and RMSE are measures of the

spread of the Y around the regression line

Standard error of the regression

SER =

√√√√ 1

n − k − 1

n∑
i=1

ûi
2 =

√
SSR

n − k − 1
(19)

Root mean squared error

RMSE =

√√√√1

n

n∑
i=1

ûi
2 =

√
SSR

n
(20)



R2 and adjusted R2

The R2 is the fraction of the variance explained – same definition as in regression with

a single regressor:

The problem with R2

R2 =
ESS

TSS
= 1− SSR

TSS
(21)

Recall that ESS =
n∑

i=1

(Ŷ − Ȳ )2; SSR =
n∑

i=1

ûi
2; and TSS =

n∑
i=1

(Yi − Ȳ )2

But, the R2 always increases when you add another regressor!



Meet your friend, the adjusted R2

The adjusted R2, R̄2 corrects this problem by “penalizing” you for adding another

regressor.

R̄2 = 1− n − 1

n − k − 1

SSR

TSS
(22)

Note that R̄2 < R2, however, the two will become very close together if n is large.



Least squares assumptions



Least squares assumptions

We add one more assumption as we upgrade to the multiple regression model

I Zero conditional mean assumption: E (ui |X1i ,X2i , ...,Xki ) = 0

I all the X s and Y s are independently and identically distributed draws from their

joint distribution

I Large outliers are unlikely: all have nonzero finite fourth moments

I There is no perfect multicollinearity



Assumption 1: Zero conditional mean

I This has the same interpretation as in regression with a single regressor.

I Failure of this condition leads to omitted variable bias, specifically, if an omitted

variable belongs in the equation (so is in u) and is correlated with an included X ,

then this condition fails and there is OVB.

I The best solution, if possible, is to include the omitted variable in the regression.

I A second, related solution is to include a variable that controls for the omitted

variable (discussed in Ch. 7)



Assumptions 2 and 3

I Assumption 2 (X s and Y are i.i.d) is satisfied automatically if the data are

collected by simple random sampling

I Assumption 3: Large outliers are rare is the same we had before. Check your

data (scatterplots!) to make sure no crazy values



Assumption 4: No multicollinearity

Perfect multicollinearity: When one of the regressors is an exact

linear function of another regressor

Perfect multicollinearity means that you cannot estimate your models ... but Stata will

fix this for you automatically by excluding any perfectly collinear variable!



Perfect multicollinearity

. gen ACT_36 = ACT/36

. regress colGPA hsGPA ACT ACT_36

note: ACT_36 omitted because of collinearity

Source SS df MS Number of obs = 141

F(2, 138) = 14.78

Model 3.42365506 2 1.71182753 Prob > F = 0.0000

Residual 15.9824444 138 .115814814 R-squared = 0.1764

Adj R-squared = 0.1645

Total 19.4060994 140 .138614996 Root MSE = .34032

colGPA Coef. Std. Err. t P>|t| [95% Conf. Interval]

hsGPA .4534559 .0958129 4.73 0.000 .2640047 .6429071

ACT .009426 .0107772 0.87 0.383 -.0118838 .0307358

ACT_36 0 (omitted)

_cons 1.286328 .3408221 3.77 0.000 .612419 1.960237



Perfect multicollinearity

. gen lowhsGPA = hsGPA < 2

. regress colGPA hsGPA lowhsGPA ACT

note: lowhsGPA omitted because of collinearity

Source SS df MS Number of obs = 141

F(2, 138) = 14.78

Model 3.42365506 2 1.71182753 Prob > F = 0.0000

Residual 15.9824444 138 .115814814 R-squared = 0.1764

Adj R-squared = 0.1645

Total 19.4060994 140 .138614996 Root MSE = .34032

colGPA Coef. Std. Err. t P>|t| [95% Conf. Interval]

hsGPA .4534559 .0958129 4.73 0.000 .2640047 .6429071

lowhsGPA 0 (omitted)

ACT .009426 .0107772 0.87 0.383 -.0118838 .0307358

_cons 1.286328 .3408221 3.77 0.000 .612419 1.960237



Perfect multicollinearity - dummy variable trap

Here we have a dummy variable trap

colGPA = β0 + β1fresh + β2soph + β3junior + β4senior + β5hsGPS + u (23)



Perfect multicollinearity - dummy variable trap

. regress colGPA fresh soph jun senior hsGPA,robust

note: fresh omitted because of collinearity

Linear regression Number of obs = 141

F(4, 136) = 6.66

Prob > F = 0.0001

R-squared = 0.1734

Root MSE = .34344

Robust

colGPA Coef. Std. Err. t P>|t| [95% Conf. Interval]

fresh 0 (omitted)

soph .0714571 .3010712 0.24 0.813 -.5239295 .6668436

junior -.0086131 .0914072 -0.09 0.925 -.1893764 .1721503

senior -.0224848 .0881555 -0.26 0.799 -.1968178 .1518482

hsGPA .4739247 .1003441 4.72 0.000 .2754881 .6723613

_cons 1.457486 .3277041 4.45 0.000 .8094308 2.105541



Imperfect multicollinearity

I Imperfect multicollinearity occurs when two or more regressors are very highly

correlated.

I Their scatterplot will pretty much look like a straight line – almost “co-linear” –

but unless the correlation is exactly ±1, that collinearity is imperfect.

I The idea: the coefficient on X1 is the effect of X1 holding X2 constant; but if X1

and X2 are highly correlated, there is very little variation in X1 once X2 is held

constant – so the data don’t contain much information about what happens when

X1 changes but X2 doesn’t. If so, the variance of the OLS estimator of the

coefficient on X1 will be large.

I Imperfect multicollinearity (correctly) results in large standard errors for one or

more of the OLS coefficients.

I Think carefully about what controls you need when buildling your regression



Sampling distribution of OLS estimators, multiple regression

I Under the four Least Squares Assumptions,

I The sampling distribution of β̂1 has mean β1 (unbiased!)

I var(β̂1) is inversely proportional to n

I Other than its mean and variance, the exact (finite-n) distribution of β̂1 is very

complicated; but for large n. . .

I β̂1 is consistent: β̂1
p−→ β1

I The OLS estimators are jointly normally distributed

I Each
β̂j − E (β̂j)√

var(β̂j

is distributed approximately N(0, 1)

I These hold statements for all our β̂j

Conceptually, there is nothing new here!
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