
Nonlinear Regression Functions
SW Chapter 8



Overview of nonlinear regression models

Polynomial regression

Logarithmic functions

Interaction terms

Two binary variables

One binary, one continuous variables

Two continuous variables



Learning objectives

▶ Estimate and interpret linear regressions that are functions of one variable
▶ Polynomials
▶ Logarithms

▶ Estimate and interpret linear regressions with non-linear functions of two
variables: interaction terms!



Overview of nonlinear regression
models



Three types of tests

▶ So far, we have assumed a linear relationship between Yi and Xi
▶ In reality, the relationship between variables is typically non-linear
▶ Could be convex, concave, or something more complicated!



Income and test scores

Effect of average per-capita income in a school district on test scores

60
0

65
0

70
0

75
0

0 20 40 60
avginc

testscr Fitted values



General nonlinear population regression function

Yi = f(X1i, X2i, ..., Xki) + ui, i = 1, 2, ...,n

Assumptions (same):

1. E[ui| = X1i, X2i, ..., Xki) = 0
2. (X1i, X2i, ..., Xki) are i.i.d.
3. Big outliers are rare
4. No perfect multicollinearity

The change in Y associated with a change in X1i, holding X2, ..., Xk constant is:

∆Y = f(X1 +∆X1, X2, ..., Xk)− f(X1, X2, ..., XK)



Polynomial regression



Quadratic regression

YI = β0 + β1Xi + β2X2 + ui

▶ Xi and Yi have a non-linear relationship
▶ β1 does not measure the effect of a one-unit change in Xi on Yi: if Xi changes,

it is necessarily true that X2i also changes
▶ The effect of a one-unit change in Yi depends on both β1 and β2



A mathematical explanation:

Old model: Yi = β0 + β1Xi + ui

▶ ∂Yi
∂Xi

= β1

New Model: Yi = β0 + β1Xi+β2X2i+ui

▶ ∂Yi
∂Xi

= β1+β2Xi
▶ The effect of a one-unit change in Xi depends on Xi
▶ If β2 > 0, then the effect grows with Xi
▶ If β2 < 0, then the effect diminishes with Xi



Test scores and income

TestScorei = β + β1Incomei + β2Income2i + ui

▶ Use data on average income in a school district
▶ Allow a nonlinear relationship between test score and income
▶ In Stata, generate the Income2 variable before you include it:

gen income2 = income^2



Test scores and income

. regress testscr avginc, robust
Linear regression Number of obs = 420

F(1, 418) = 273.29
Prob > F = 0.0000
R-squared = 0.5076
Root MSE = 13.387

Robust
testscr Coef. Std. Err. t P>|t| [95% Conf. Interval]

avginc 1.87855 .1136349 16.53 0.000 1.655183 2.101917
_cons 625.3836 1.867872 334.81 0.000 621.712 629.0552



Test scores and income

. gen avginc2 = avginc^2

. regress testscr avginc avginc2, robust
Linear regression Number of obs = 420

F(2, 417) = 428.52
Prob > F = 0.0000
R-squared = 0.5562
Root MSE = 12.724

Robust
testscr Coef. Std. Err. t P>|t| [95% Conf. Interval]

avginc 3.850995 .2680941 14.36 0.000 3.32401 4.377979
avginc2 -.0423085 .0047803 -8.85 0.000 -.051705 -.0329119
_cons 607.3017 2.901754 209.29 0.000 601.5978 613.0056



Test scores and income

̂TestScorei = 607.3+ 3.85Incomei − 0.042Income2i

Is income positively or negatively associated with test scores?

▶ You could plug in values to see what happens as X changes
▶ Income = 10, TestScore = 641.6
▶ Income = 11, TestScore = 644.6 (3-point increase)
▶ Income = 30, TestScore = 685
▶ Income = 31, TestScore = 686.3 (1.3-point increase)

▶ Relationship between test scores and income is concave



Test scores and income

You could plot the predictions and the data to see what the relationship looks like

predict yhat
scatter yhat testscr avginc
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Test scores and income

̂TestScorei = 607.3+ 3.85Incomei − 0.042Income2i

▶ Finally, you could use calculus!
▶ First derivative is slope of regression line at any given value of income
▶ If first derivative is positive, then increasing income increases expected test

scores
▶ If first derivative is negative, then increasing income decreases expected test

scores



Test scores and income

d2 ̂TestScorei
dIncome2i

= −0.084

▶ If the second derivative is positive, the function is convex
▶ If the second derivative is negative, the function is concave
▶ Relationship between test scores and income is negative and therefore

concave for all values of income



How to calculate predicted changes

1. The predicted change in Y must be computed for specific values of X (that’s
the point!)
▶ Predict Y at X = x
▶ Predict Y at X = x+∆x
▶ Take the difference

2. Rely on the derivative (approximate because the slope changes)

testscr = β0 + β1avginc+ β2avginc2 + u
∂testscr
∂avginc = β1 + 2β2avginc

∂testscr = (β1 + 2β2avginc)∂avginc



Hypothesis test of linear effect

Test whether the relationship is non-linear: H0 : β2 = 0

. gen avginc2 = avginc^2

. regress testscr avginc avginc2, robust
Linear regression Number of obs = 420

F(2, 417) = 428.52
Prob > F = 0.0000
R-squared = 0.5562
Root MSE = 12.724

Robust
testscr Coef. Std. Err. t P>|t| [95% Conf. Interval]

avginc 3.850995 .2680941 14.36 0.000 3.32401 4.377979
avginc2 -.0423085 .0047803 -8.85 0.000 -.051705 -.0329119
_cons 607.3017 2.901754 209.29 0.000 601.5978 613.0056



Hypothesis test NO effect

Test whether the relationship is non-linear: H0 : β1 = β2 = 0

. test avginc=avginc2 =0
( 1) avginc - avginc2 = 0
( 2) avginc = 0

F( 2, 417) = 428.52
Prob > F = 0.0000



More than two polynomial terms

Generalize to k polynomial terms (more flexible specification)

Yi = β0 + β1Xi + β2X2i + β3X3i + ...+ βkXki + ui

▶ Given enough terms, a polynomial can represent any relationship of Y and X
as any continuous shape

▶ This is a simple example of an advanced topic: nonparametric estimation



Logarithmic functions



Logarithmic functions

ln() is a special function: the inverse of the exponential function x = ln(ex)
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▶ Large slope for small x, approaches zero for large x
▶ Defined only for positive values of x
▶ Log of zero or a negative number is undefined

In this class, we are ALWAYS referring to NATURAL LOG



Functional forms: logarithmic

▶ Advantages
▶ Convenient percentage/elasticity interpretation
▶ Slope coefficients of logged variables are invariant to rescalings
▶ Taking logs often eliminates/mitigates problems with outliers
▶ Taking logs often helps to secure normality and homoskedasticity

▶ Caveats
▶ Variables measured in units such as years should not be logged
▶ Variables measured in percentage points should also not be logged
▶ Logs must not be used if variables take on zero or negative values
▶ It is hard to reverse the log-operation when constructing predictions



Small changes and logarithms

For small changes in x...

100∆log(x) ≈ %∆x

Based on insight that ln(1+ r) ≈ r



Examples of differencing logarithms

Log approximation Exact percent change
ln(51)-ln(50) 0.019802 (51-50)/50 0.02
ln(50.5)-ln(50) 0.009950 (50.5-50)/50 0.01
ln(60)-ln(50) 0.182322 (60-50)/50 0.20
ln(80)-ln(50) 0.470004 (80-50)/50 0.6 0



Large changes and log dependent variables

▶ Are logs still useful with “large” changes? YES!
▶ “Large” is roughly when a unit change in X is associated with more than a

10% change in Y
▶ If so, calculate the exact percentage difference by exponentiating the

coefficient:

%∆Ŷ = 100[eβ̂j − 1]

Make sure you preserve the sign of the coefficient!



Using logs to compute percentage changes

Suppose we want to model hourly wages (wage) as a function of years of
education (educ)

wage = 10.5+ 3educ

Level-level: A 1-year increase in years of education is associated with a $3
increase in wages

log(wage) = 10.5+ 3log(educ)

Log-log (elasticity): A 1% increase in years of education is associated with a 3%
increase in wages



Using logs to compute percentage changes

Suppose we want to model hourly wages (wage) as a function of years of
education (educ)

log(wage) = 10.5+ 3educ

Log-level (semi-elasticity): A 1-year increase in years of education is associated
with a 300% increase in wages (approximation)

wage = 10.5+ 3log(educ)

Level-log: A 1% increase in years of education is associated with a 3/100 = $0.03
increase in wages (approximation)



Where do these last two come from?

log(wage) = 10.5+ 3educ

Log-level (semi-elasticity): A 1-year increase in years of education is associated
with a 300% increase in wages (approximation)

1. Take partial derivative of both sides: ∆log(wage) = 3∆educ
2. Multiply by 100: 100∆log(wage) = 3 ∗ 100∆educ
3. Recall that 100∆log(x) ≈ %∆x
4. %∆wage = 3 ∗ 100(∆educ)



Where do these last two come from?

wage = 10.5+ 3log(educ)

Level-log: A 1% increase in years of education is associated with a 3/100 = $0.03
increase in wages approximation

1. Take partial derivative of both sides: ∆wage = 3∆log(educ)
2. Multiply/divide by 100: ∆wage = (3/100)∆log(educ)
3. Recall that 100∆log(x) ≈ %∆x
4. ∆wage ≈ 0.03(%∆educ)



Summary

Type Population model Interpretation
Level-level y = β0 + β1x1 + u A 1-unit increase in x1 is associ-

ated with a β1-unit change in y.
Log-log ln(y) = β0 + β1ln(x1) + u A 1% increase in x1 is associated

with a β1% unit change in y.
Log-level ln(y) = β0 + β1x1 + u A 1-unit increase in x1 is associ-

ated with a 100β1% unit change
in y.

Level-log y = β0 + β1ln(x1) + u A 1% increase in x1 is associated
with a 0.01β1-unit change in y.



When to use logarithms?

▶ For a variable Z, think about which are more meaningful?
1. Absolute changes in Z ⇒ use levels
2. Percent changes in Z ⇒ use logs

Note that you do not need to transform all variables!



Interaction terms



Interaction terms?

▶ Are Hispanic players paid more or
less?

▶ Are players in the NL paid more or
less?

▶ Is there a differential relationship
between being Hispanic and pay in
the NL vs AL?



Three types of interactions

1. Interaction between binary variables
▶ Gives you finder control over measuring group estimates

2. Interactions between a binary and a continuous variable
▶ example: hits and NL

3. Interactions between two continuous variables
▶ hits and RBIs



Interactions with two binary variables

▶ Let’s interact NL with both demographic characteristics
▶ genhNL = hispan ∗ NL: 1 for Hispanic players in the national league
▶ genbNL = black ∗ NL: 1 for Black players in the national league



Interactions with two binary variables

. gen hNL = hispan*nl

. gen bNL = black*nl

. reg salary hispan black nl hNL bNL, robust
Linear regression Number of obs = 353

F(5, 347) = 4.13
Prob > F = 0.0012
R-squared = 0.0358
Root MSE = 1.4e+06

Robust
salary Coef. Std. Err. t P>|t| [95% Conf. Interval]

hispan 110714.8 270045.6 0.41 0.682 -420417.4 641847.1
black 462190.2 264680.3 1.75 0.082 -58389.42 982769.8

nl 10001.68 195271.8 0.05 0.959 -374063.5 394066.9
hNL -695315.4 341685.5 -2.03 0.043 -1367351 -23280.25
bNL -143244 370724.2 -0.39 0.699 -872393.4 585905.3

_cons 1261249 132198.2 9.54 0.000 1001238 1521259



Interactions with two binary variables

▶ Who is in the left-out group? White players in the American League, with
average salary of $1,261,249 in 1993

▶ Effect on salary of being in the National League for White Players? (nl = 1) A
$10,002 increase in salary

▶ What is the average salary for Hispanic players in the American League?
(hispan = 1) 1,261,249 + 110,715= 1,371,964

▶ What is the average salary for Hispanic players in the National League?
(hispan = 1,nl = 1,hNL = 1) 1,261,249+ 110,715 + 10,002 - 695,315 = $686,650



Interactions, one binary and one continuous

Effect of change in continuous X1,i and binary D2,i on Yi:

YI = β0 + β1X1,i + β2D2,i + β3X1,iD2,i + ui

Effect of a 1-unit change in X1,i when D2,i = 0? β1

Effect of a 1-unit change in X1,i when D2,i = 1? β1 + β3

Effect of change in D2,i = 0 from 0 to 1? β2 + β3Xi



Interactions, one binary and one continuous

Does the relationship between salary and career hits differ if you are in the NL or
AL?

. gen hitsNL = hits*nl

. reg salary hispan black nl hits hitsNL, robust
Linear regression Number of obs = 353

F(5, 347) = 25.93
Prob > F = 0.0000
R-squared = 0.4017
Root MSE = 1.1e+06

Robust
salary Coef. Std. Err. t P>|t| [95% Conf. Interval]

hispan -41753.53 134709.3 -0.31 0.757 -306703 223195.9
black 190197.2 148006.2 1.29 0.200 -100905 481299.3

nl -116998.6 136614.4 -0.86 0.392 -385695.1 151697.9
hits 1411.073 154.9505 9.11 0.000 1106.313 1715.834

hitsNL 291.2646 310.123 0.94 0.348 -318.6929 901.222
_cons 453947.5 97562.33 4.65 0.000 262059.6 645835.5

.



Interactions, one binary and one continuous

ŝalaryi = 453948− 41754hispani + 190197blacki − 116999nli + 1411hitsi + 291hitsNLi

▶ In the AL, the effect of one more career hit: $1,411 increase in salary
▶ In the NL, the effect of one more career hit: $1,411+$291 =$1,702 increase in

salary
▶ Effect of being in the NL on salary: -$116,996+$291*Hitsi
▶ If hits = 500, effect of being in NL on salary:-$116,996+$291(500)=$28,504



Interactions, two continuous variables

Effect of change in continuous X1,i and continuous X2,i on Yi:

YI = β0 + β1X1,i + β2X2,i + β3X1,iX2,i + ui

Effect of a 1-unit change in X1,i? β1 + β3X2,i

Effect of a 1-unit change in X2,i? β2 + β3X1,i



Interactions, two continuous variables

. gen hitsXRBI = hits*rbis

. reg salary hispan black nl hits rbis hitsXRBI, robust
Linear regression Number of obs = 353

F(6, 346) = 42.78
Prob > F = 0.0000
R-squared = 0.5288
Root MSE = 9.7e+05

Robust
salary Coef. Std. Err. t P>|t| [95% Conf. Interval]

hispan 26130.34 115023 0.23 0.820 -200102 252362.7
black 193761.6 132724.3 1.46 0.145 -67286.29 454809.5

nl 70225.2 107150.8 0.66 0.513 -140523.7 280974.1
hits 662.4478 343.1079 1.93 0.054 -12.39187 1337.287
rbis 5649.045 853.5365 6.62 0.000 3970.272 7327.818

hitsXRBI -1.800353 .2123612 -8.48 0.000 -2.218034 -1.382671
_cons -80493.96 87751.74 -0.92 0.360 -253087.9 92100.01



Interactions, two continuous variables

ŝalaryi = −80494+ 26130hispani + 193762blacki + 70225nli
+ 662hitsi ++5659rbisi − 1.80hitsXRBIi

▶ Effect of 100 increase in career hits: $662 ∗ 100− $1.80 ∗ 100 ∗ rbis
▶ Effect of 100 increase in career RBIs: $45649 ∗ 100− $1.80 ∗ 100 ∗ hits

Remember economic significance for interpreting results



Choosing interaction terms

▶ Is there a compelling reason that the effect of changing one regressor might
depend on another? If so, interact the two!

▶ Test whether the interaction term is statistically significant. If not, you still
may want to include if the economic indicates it should be there

▶ Can use the adjusted R2 (R̄2) - if increases when you add a variable, provides
support for keeping it



Conclusion

Overview of nonlinear regression models
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Two continuous variables
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