Nonlinear Regression Functions

SW Chapter 8

Overview of nonlinear regression models

Polynomial regression

Logarithmic functions

Interaction terms

Two binary variables

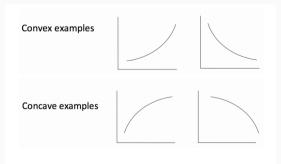
One binary, one continuous variables

Two continuous variables

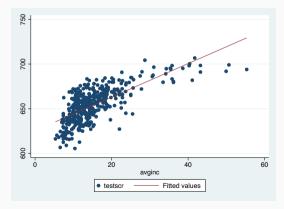
- Estimate and interpret linear regressions that are functions of one variable
 - Polynomials
 - Logarithms
- Estimate and interpret linear regressions with non-linear functions of two variables: interaction terms!

Overview of nonlinear regression models

- So far, we have assumed a linear relationship between Y_i and X_i
- ▶ In reality, the relationship between variables is typically non-linear
- Could be convex, concave, or something more complicated!



Effect of average per-capita income in a school district on test scores



General nonlinear population regression function

$$Y_i = f(X_{1i}, X_{2i}, ..., X_{ki}) + u_i, i = 1, 2, ..., n$$

Assumptions (same):

- 1. $E[u_i| = X_{1i}, X_{2i}, ..., X_{ki}) = 0$
- 2. $(X_{1i}, X_{2i}, ..., X_{ki})$ are i.i.d.
- 3. Big outliers are rare
- 4. No perfect multicollinearity

The change in Y associated with a change in X_{1i} , holding $X_2, ..., X_k$ constant is:

$$\Delta Y = f(X_1 + \Delta X_1, X_2, ..., X_k) - f(X_1, X_2, ..., X_K)$$

Polynomial regression

$$Y_I = \beta_0 + \beta_1 X_i + \beta_2 X^2 + u_i$$

- ► X_i and Y_i have a non-linear relationship
- ► β_1 does not measure the effect of a one-unit change in X_i on Y_i : if X_i changes, it is necessarily true that X_i^2 also changes
- The effect of a one-unit change in Y_i depends on both β_1 and β_2

Old model:
$$Y_i = \beta_0 + \beta_1 X_i + u$$

 $\partial Y_i = \beta_1$

$$\overline{\partial X_i} = \beta^2$$

New Model: $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + u_i$

$$\blacktriangleright \ \frac{\partial Y_i}{\partial X_i} = \beta_1 + \beta_2 X_i$$

► The effect of a one-unit change in *X_i* depends on *X_i*

- If $\beta_2 > 0$, then the effect grows with X_i
- If $\beta_2 < 0$, then the effect diminishes with X_i

$$TestScore_i = \beta + \beta_1 Income_i + \beta_2 Income_i^2 + u_i$$

- ► Use data on average income in a school district
- Allow a nonlinear relationship between test score and income
- ▶ In Stata, generate the *Income*² variable before you include it:

```
gen income2 = income^2
```

Linear regression

. regress testscr avginc, robust

Number of obs	=	420
F(1, 418)	=	273.29
Prob > F	=	0.0000
R-squared	=	0.5076
Root MSE	=	13.387

testscr	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
avginc	1.87855	.1136349	16.53	0.000	1.655183	2.101917
_cons	625.3836	1.867872	334.81		621.712	629.0552

- . gen avginc2 = avginc²
- . regress testscr avginc avginc2, robust

Linear regression	Number of obs	=	420
	F(2, 417)	=	428.52
	Prob > F	=	0.0000
	R-squared	=	0.5562
	Root MSE	=	12.724

testscr	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
avginc	3.850995	.2680941	14.36	0.000	3.32401	4.377979
avginc2	0423085	.0047803	-8.85	0.000	051705	0329119
_cons	607.3017	2.901754	209.29	0.000	601.5978	613.0056

 $\widehat{\text{TestScore}_i} = 607.3 + 3.85 \text{Income}_i - 0.042 \text{Income}_i^2$

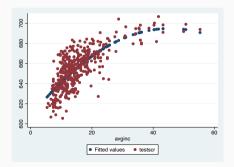
Is income positively or negatively associated with test scores?

▶ You could plug in values to see what happens as X changes

- Income = 10, TestScore = 641.6
- Income = 11, TestScore = 644.6 (3-point increase)
- Income = 30, TestScore = 685
- ► Income = 31, TestScore = 686.3 (1.3-point increase)

▶ Relationship between test scores and income is **concave**

You could plot the predictions and the data to see what the relationship looks like predict yhat scatter yhat testscr avginc



$\widehat{\text{TestScore}_i} = 607.3 + 3.85 \text{Income}_i - 0.042 \text{Income}_i^2$

- ► Finally, you could use calculus!
- ► First derivative is *slope* of regression line at any given value of income
- If first derivative is positive, then increasing *income* increases expected test scores
- If first derivative is negative, then increasing *income* decreases expected test scores

$$\frac{d^2 Test Score_i}{dIncome_i^2} = -0.084$$

- ► If the second derivative is positive, the function is **convex**
- ► If the second derivative is negative, the function is **concave**
- Relationship between test scores and income is negative and therefore concave for all values of income

How to calculate predicted changes

- 1. The predicted change in Y must be computed for specific values of X (that's the point!)
 - Predict Y at X = x
 - Predict Y at $X = x + \Delta x$
 - Take the difference
- 2. Rely on the derivative (approximate because the slope changes)

$$testscr = \beta_0 + \beta_1 avginc + \beta_2 avginc^2 + u$$
$$\frac{\partial testscr}{\partial avginc} = \beta_1 + 2\beta_2 avginc$$
$$\partial testscr = (\beta_1 + 2\beta_2 avginc)\partial avginc$$

Test whether the relationship is non-linear: $H_0: \beta_2 = 0$

- . gen avginc2 = avginc²
- . regress testscr avginc avginc2, robust

Linear regression

Number of obs	=	420
F(2, 417)	=	428.52
Prob > F	=	0.0000
R-squared	=	0.5562
Root MSE	=	12.724
Root MSE	=	12.724

testscr	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
avginc	3.850995	.2680941	14.36	0.000	3.32401	4.377979
avginc2	0423085	.0047803	-8.85	0.000	051705	0329119
_cons	607.3017	2.901754	209.29	0.000	601.5978	613.0056

Test whether the relationship is non-linear: $H_0: \beta_1 = \beta_2 = 0$

```
. test avginc=avginc2 =0
( 1) avginc - avginc2 = 0
( 2) avginc = 0
F( 2, 417) = 428.52
Prob > F = 0.0000
```

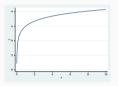
Generalize to k polynomial terms (more flexible specification)

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + \dots + \beta_k X_i^k + u_i$$

- Given enough terms, a polynomial can represent any relationship of Y and X as any continuous shape
- ► This is a simple example of an advanced topic: nonparametric estimation

Logarithmic functions

ln() is a special function: the inverse of the exponential function $x = ln(e^x)$



- ► Large slope for small *x*, approaches zero for large *x*
- Defined only for positive values of x
- ► Log of zero or a negative number is undefined

In this class, we are ALWAYS referring to NATURAL LOG

Functional forms: logarithmic

Advantages

- Convenient percentage/elasticity interpretation
- Slope coefficients of logged variables are invariant to rescalings
- Taking logs often eliminates/mitigates problems with outliers
- ► Taking logs often helps to secure normality and homoskedasticity
- Caveats
 - ▶ Variables measured in units such as years should not be logged
 - Variables measured in percentage points should also not be logged
 - ▶ Logs must not be used if variables take on zero or negative values
 - It is hard to reverse the log-operation when constructing predictions

For *small* changes in *x*...

$$100\Delta log(x) \approx \%\Delta x$$

Based on insight that $ln(1 + r) \approx r$

Log approximation		Exact percent	change
ln(51)-ln(50)	0.019802	(51-50)/50	0.02
ln(50.5)-ln(50)	0.009950	(50.5-50)/50	0.01
ln(60)-ln(50)	0.182322	(60-50)/50	0.20
ln(80)-ln(50)	0.470004	(80-50)/50	0.6 0

- ► Are logs still useful with "large" changes? YES!
- "Large" is roughly when a unit change in X is associated with more than a 10% change in Y
- If so, calculate the exact percentage difference by exponentiating the coefficient:

$$\%\Delta\hat{Y} = 100[e^{\hat{\beta}_j} - 1]$$

Make sure you preserve the sign of the coefficient!

Suppose we want to model hourly wages (wage) as a function of years of education (educ)

wage = 10.5 + 3educ

Level-level: A **1-year** increase in years of education is associated with a **\$3** increase in wages

```
log(wage) = 10.5 + 3log(educ)
```

Log-log (elasticity): A **1%** increase in years of education is associated with a **3%** increase in wages

Suppose we want to model hourly wages (wage) as a function of years of education (educ)

log(wage) = 10.5 + 3educ

Log-level (semi-elasticity): A **1-year** increase in years of education is associated with a **300%** increase in wages *(approximation)*

wage = 10.5 + 3log(educ)

Level-log: A **1%** increase in years of education is associated with a **3/100 = \$0.03** increase in wages (*approximation*)

log(wage) = 10.5 + 3educ

Log-level (semi-elasticity): A 1-year increase in years of education is associated with a 300% increase in wages *(approximation)*

- 1. Take partial derivative of both sides: $\Delta log(wage) = 3\Delta educ$
- 2. Multiply by 100: $100 \Delta log(wage) = 3 * 100 \Delta educ$
- 3. Recall that $100 \Delta log(x) \approx \% \Delta x$
- 4. % $\Delta wage = 3 * 100(\Delta educ)$

wage = 10.5 + 3log(educ)

Level-log: A 1% increase in years of education is associated with a 3/100 = \$0.03 increase in wages *approximation*

- 1. Take partial derivative of both sides: $\Delta wage = 3\Delta log(educ)$
- 2. Multiply/divide by 100: $\Delta wage = (3/100)\Delta log(educ)$
- 3. Recall that $100 \Delta log(x) \approx \% \Delta x$
- 4. $\Delta wage \approx 0.03(\% \Delta educ)$

Туре	Population model	Interpretation
Level-level	$y = \beta_0 + \beta_1 x_1 + u$	A 1-unit increase in x_1 is associ-
		ated with a eta_1 -unit change in y.
Log-log	$ln(y) = \beta_0 + \beta_1 ln(x_1) + u$	A 1% increase in x_1 is associated
		with a eta_1 % unit change in y.
Log-level	$ln(y) = \beta_0 + \beta_1 x_1 + u$	A 1-unit increase in x ₁ is associ-
		ated with a 100 β_1 % unit change
		in y.
Level-log	$y = \beta_0 + \beta_1 ln(x_1) + u$	A 1% increase in x_1 is associated
		with a 0.01 eta_1 -unit change in y.

► For a variable Z, think about which are more meaningful?

- 1. Absolute changes in $Z \Rightarrow$ use levels
- 2. Percent changes in $Z \Rightarrow$ use logs

Note that you do not need to transform all variables!

Interaction terms

Interaction terms?

inear regress	ion			Number	of obs	=	353
				F(3, 34	9)	=	3.27
				Prob > F		=	0.0214
				R-squar	ed	=	0.0276
				Root MS	E	=	1.4e+0
salary	Coef.	Robust Std. Err.	t	P> t	[95%	Conf.	Interval]
satary							
hispan	-212538.6	176821.5	-1.20	0.230	-5603	08.5	135231.2
	-212538.6 399066.6	176821.5 184907.6	-1.20 2.16	0.230 0.032		08.5 93.2	
hispan						93.2	135231.2 762740 131391.5

- Are Hispanic players paid more or less?
- Are players in the NL paid more or less?
- Is there a differential relationship between being Hispanic and pay in the NL vs AL?

- 1. Interaction between **binary** variables
 - Gives you finder control over measuring group estimates
- 2. Interactions between a binary and a continuous variable
 - ▶ example: hits and NL
- 3. Interactions between two continuous variables
 - ▶ hits and RBIs

Let's interact NL with both demographic characteristics

- ▶ *genhNL* = *hispan* * *NL*: 1 for Hispanic players in the national league
- ► *genbNL* = *black* * *NL*: 1 for Black players in the national league

Interactions with two binary variables

- . gen hNL = hispan*nl
- . gen bNL = black*nl
- . reg salary hispan black nl hNL bNL, robust

Linear	regression

Number of obs	=	353
F(5, 347)	=	4.13
Prob > F	=	0.0012
R-squared	=	0.0358
Root MSE	=	1.4e+06

salary	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
hispan	110714.8	270045.6	0.41	0.682	-420417.4	641847.1
black	462190.2	264680.3	1.75	0.082	-58389.42	982769.8
nl	10001.68	195271.8	0.05	0.959	-374063.5	394066.9
hNL	-695315.4	341685.5	-2.03	0.043	-1367351	-23280.25
bNL	-143244	370724.2	-0.39	0.699	-872393.4	585905.3
_cons	1261249	132198.2	9.54	0.000	1001238	1521259

- Who is in the left-out group? White players in the American League, with average salary of \$1,261,249 in 1993
- Effect on salary of being in the National League for White Players? (nl = 1) A\$10,002 increase in salary
- What is the average salary for Hispanic players in the American League? (*hispan* = 1) 1,261,249 + 110,715= 1,371,964
- What is the average salary for Hispanic players in the National League? (hispan = 1, nl = 1, hNL = 1) 1,261,249+ 110,715 + 10,002 - 695,315 = \$686,650

Interactions, one binary and one continuous

Effect of change in **continuous** $X_{1,i}$ and **binary** $D_{2,i}$ on Y_i :

$$Y_{1} = \beta_{0} + \beta_{1}X_{1,i} + \beta_{2}D_{2,i} + \beta_{3}X_{1,i}D_{2,i} + u_{1,i}$$

Effect of a 1-unit change in
$$X_{1,i}$$
 when $D_{2,i} = 0$? β_1

Effect of a 1-unit change in $X_{1,i}$ when $D_{2,i} = 1$? $\beta_1 + \beta_3$

Effect of change in $D_{2,i} = 0$ from 0 to 1? $\beta_2 + \beta_3 X_i$

Interactions, one binary and one continuous

Does the relationship between salary and career hits differ if you are in the NL or AL?

- . gen hitsNL = hits*nl
- . reg salary hispan black nl hits hitsNL, robust

Linear regression

Number of obs	=	353
F(5, 347)	=	25.93
Prob > F	=	0.0000
R-squared	=	0.4017
Root MSE	=	1.1e+06

salary	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
hispan	-41753.53	134709.3	-0.31	0.757	-306703	223195.9
black	190197.2	148006.2	1.29	0.200	-100905	481299.3
nl	-116998.6	136614.4	-0.86	0.392	-385695.1	151697.9
hits	1411.073	154.9505	9.11	0.000	1106.313	1715.834
hitsNL	291.2646	310.123	0.94	0.348	-318.6929	901.222
_cons	453947.5	97562.33	4.65	0.000	262059.6	645835.5

salary_i = 453948 - 41754hispan_i + 190197black_i - 116999nl_i + 1411hits_i + 291hitsNL_i

- ► In the AL, the effect of one more career hit: \$1,411 increase in salary
- In the NL, the effect of one more career hit: \$1,411+\$291 =\$1,702 increase in salary
- Effect of being in the NL on salary: -\$116,996+\$291*Hits_i
- ▶ If *hits* = 500, effect of being in NL on salary:-\$116,996+\$291(500)=\$28,504

Effect of change in **continuous** $X_{1,i}$ and **continuous** $X_{2,i}$ on Y_i :

$$Y_{1} = \beta_{0} + \beta_{1}X_{1,i} + \beta_{2}X_{2,i} + \beta_{3}X_{1,i}X_{2,i} + u_{i}$$

Effect of a 1-unit change in
$$X_{1,i}$$
? $\beta_1 + \beta_3 X_{2,i}$ Effect of a 1-unit change in $X_{2,i}$? $\beta_2 + \beta_3 X_{1,i}$

Interactions, two continuous variables

- . gen hitsXRBI = hits*rbis
- . reg salary hispan black nl hits rbis hitsXRBI, robust

Linear regression

Number of obs	=	353
F(6, 346)	=	42.78
Prob > F	=	0.0000
R-squared	=	0.5288
Root MSE	=	9.7e+05

salary	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
hispan	26130.34	115023	0.23	0.820	-200102	252362.7
black	193761.6	132724.3	1.46	0.145	-67286.29	454809.5
nl	70225.2	107150.8	0.66	0.513	-140523.7	280974.1
hits	662.4478	343.1079	1.93	0.054	-12.39187	1337.287
rbis	5649.045	853.5365	6.62	0.000	3970.272	7327.818
hitsXRBI	-1.800353	.2123612	-8.48	0.000	-2.218034	-1.382671
_cons	-80493.96	87751.74	-0.92	0.360	-253087.9	92100.01

► Effect of 100 increase in career hits: \$662 * 100 - \$1.80 * 100 * *rbis*

▶ Effect of 100 increase in career RBIs: \$45649 * 100 - \$1.80 * 100 * hits

Remember economic significance for interpreting results

- Is there a compelling reason that the effect of changing one regressor might depend on another? If so, interact the two!
- Test whether the interaction term is statistically significant. If not, you still may want to include if the economic indicates it should be there
- Can use the **adjusted** R^2 ($\overline{R^2}$) if increases when you add a variable, provides support for keeping it

Overview of nonlinear regression models

Polynomial regression

Logarithmic functions

Interaction terms

Two binary variables

One binary, one continuous variables

Two continuous variables