

Exam 3 Review

Exam Review

- Coverage
 - Chapter 8: Non-linear regression
 - Chapter 9: Internal/External validity
 - Chapter 10: Panel Data
 - Chapter 12: Instrumental variables

Big picture

• What can go wrong with our regressions?

- Omitted variable bias (Always)
- Erroneous functional form (Chapter 8)
- Measurement error (Chapter 9)
- Reverse causality (Chapter 9/12)

• How can we solve these problems?

- Add more controls (always)
- Add higher-order terms and/or interactions (Chapter 8)
- Difference-in-differences model (Chapter 10)
- First-differences model (Chapter 10)
- Fixed effects model (Chapter 10)
- Instrumental variables model (Chapter 12)

What you need to know how to do

- What can go wrong with our regressions?
 - Omitted variable bias (Always)
 - Erroneous functional form (Chapter 8)
 - Measurement error (Chapter 9)
 - Reverse causality (Chapter 12)

• Based on descriptions of regressions, questions, data sets

- Identify when these problems are likely to occur
- Provide specific examples of what these problems look like
- Discuss the impact this will have on your estimated regression coefficients
- Discuss the impact this will have on your ability to determine causal relationships

What you need to know how to do

- How can we solve these problems?
 - Difference-in-differences model (Chapter 10)
 - First-differences model (Chapter 10)
 - Fixed effects model (Chapter 10)
 - Instrumental variables model (Chapter 12)
- Write population models of these models
- Write step-by-step how to implement these models
- Review results of estimation of these models, interpret coefficients, and "big picture" interpretation.
- Compare results from these models with OLS and discuss which is more appropriate and why

General skills you need

- Look at Stata output and/or formatted tables
 - Interpret coefficients (put numbers with them, and units!)
 - Interpret statistical significance (practice with those p-values)
 - Set up hypotheses and determine results
 - That a regression coefficient = 0
 - That multiple exclusion restrictions hold
 - Remember:
 - Set up a null
 - Set up an alternative
 - Compute a test statistic or p-value
 - Make a conclusion

Non-linear functions

- Polynomials
 - Compute effects by derivative (approximate) or by calculating for each value and taking the difference (exact)
- Logs
- Interaction terms
 - Binary-binary
 - Continuous-binary
 - Continuous-continuous

Using logs to compute percentage changes

• We do not take logs of percents/etc.

- If LFP is 75% \rightarrow easy to think about 5pp increase (levels)
 - \rightarrow harder to think about about 5% increase \rightarrow 0.05/0.75 = 6.7pp increase
- Suppose we want to model hourly wages (wage) as a function of years of education (educ)

wage = 10.5 + 3educ

Level-level: A 1-year increase in years of education is associated with a \$3 increase in wages (unit-unit)

log(wage) = 10.5 + 3log(educ)

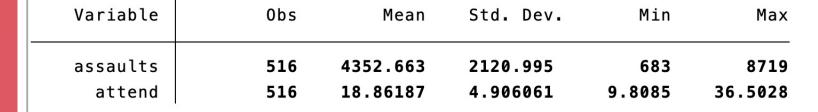
Log-log (elasticity): A 1% increase in years of education is associated with a 3% increase in wages

Using logs to compute percentage changes

log(wage) = 10.5 + 3educ

Log-level (semi-elasticity): A 1-year increase in years of education is associated with a 300% increase in wages

(approximation)



wage = 10.5 + 3log(educ) Level-log: A 1% increase in years of education is associated with a 3/100 = \$0.03 increase in wages

(approximation)

Example

assaults = number of assaults in a particular
weekend across a subset of US counties
attend = total weekend movie attendance (millions)

. sum assaults attend

Interpret the coefficient on attend

. regress assaults attend

Source	SS	df	MS	Number of ol	bs =	516
				F(1, 514)	=	28.40
Model	121306939	1	121306939	Prob > F	=	0.0000
Residual	2.1955e+09	514	4271367.88	R-squared	=	0.0524
				Adj R-square	ed =	0.0505
Total	2.3168e+09	515	4498621.42	Root MSE	=	2066.7
assaults	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
attend	98.92505	18.56295	5.33	0.000 62.4	5647	135.3936
_cons	2486.752	361.7598	6.87	0.000 1776	.042	3197.461

1 million more attendees associated w/ 98 more weekend assaults.

Interpret the coefficient on ln_attend

. regress ln_assaults ln_attend

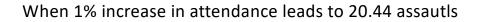
Source	SS	df	MS		r of obs	=	516
Model Residual	15.652297 189.04063	1 514	15.65229 .36778332	7 R-squ	> F ared	=	42.56 0.0000 0.0765
Total	204.692927	515	.39746199	-	-squared MSE	=	0.0747 .60645
ln_assaults	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
ln_attend _cons	.6788489 6.244118	.1040591 .3033823	6.52 20.58	0.000 0.000	.474415 5.64809		.8832824 6.84014

1% increase in attendance associated with 0.67% increase in assaults

Interpret the coefficient on attend

. regress ln_assaults attend ,robust

Linear regress	sion			Number of F(1, 514) Prob > F R-squared Root MSE	obs = = = = =	516 29.21 0.0000 0.0633 .61077
ln_assaults	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
attend _cons	.0323187 7.606019	.0059794 .1207744	5.40 62.98	0.000 0.000	.0205716 7.368746	.0440659 7.843291


 $0.032 \rightarrow$ When attendance increases by 1 million, assaults increase by 3.2%

Interpret the coefficient on ln_attend

. regress assaults ln_attend

Source	SS	df	MS		of obs =	510
Model Residual	141908410 2.1749e+09	1 514	141908410 4231287.2	R-squa	F = red =	0.0000 0.0613
Total	2.3168e+09	515	4498621.42	-	oquarea	
assaults	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_attend _cons	2044.034 -1583.56	352.9558 1029.036		0.000 0.124	1350.621 -3605.194	2737.448 438.0734

Interaction terms

. reg sleepdef male hrstotwrk yngkid marr maleXmarr maleXyngkid maleXhrs

Source	SS	df	м	S		mber of obs =	
Model	8.81324949	7	1.2590			ob > F =	0.0000
Residual	105.222161	698	.15074	8082		squared = j R-squared =	= 0.0773 = 0.0680
Total	114.035411	705	.16175	2356		-	.38826
sleepdef	Coef.	Std	. Err.	t	P> t	[95% Conf.	Interval]
male	1301368	.10	32824	-1.26	0.208	3329181	.0726445
hrstotwrk	.0053348	. 00	14888	3.58	0.000	.0024119	.0082578
yngkid	.1116302	.07	87625	1.42	0.157	0430096	.2662699
marr	1240539	.05	21929	-2.38	0.018	2265278	02158
maleXmarr	.004336	.07	95358	0.05	0.957	1518221	.1604941
maleXyngkid	0827995	.09	53117	-0.87	0.385	2699315	.1043325
maleXhrstotwrk	.0023426	. 00	20265	1.16	0.248	0016361	.0063213
_cons	.126543	.06	71915	1.88	0.060	0053787	.2584647

What is the predicted probability of being sleep deficient for a married woman with young kids who works 40 hours/week? For an equivalent man?

Chapter 9

- Internal Validity
 - OBV → correlation between x and u non-zero → endogeneity
 - Errors in measurements!
 - Simultaneous causality bias
 - Functional form error
 - Selection bias
- External validity → we know what we set out to find out, but is it valid/applicable to tother populations/setting

Internal/External Validity

Internal Validity (5 threats)

Do we measure what we meant to measure?

- Omitted variable bias
- Bad functional form
- Missing data/sample selection
- Measurement error
- Simultaneity

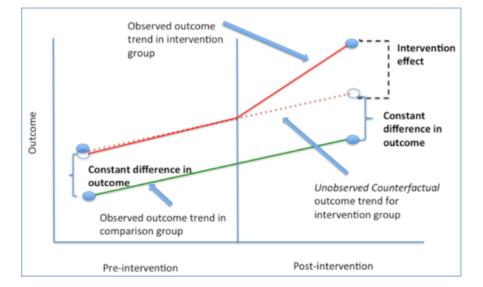
External validity

Do the results generalize?

- What if we change the setting?
- What if we change the population?

Measurement error

- Dependent variable (if uncorrelated with x)
 - Reduces precision
 - Does not affect coefficients


- Independent variable
 - Classical (at random)
 - Attenuation bias

$$\widehat{\beta_1} \xrightarrow{p} \frac{\sigma_X^2}{\sigma_X^2 + \sigma_w^2} \beta_1$$

- Non-classical (not at random)
 - Bias!

Panel data methods

- Difference-in-differences
 - Requires "natural experiment"
 - For our purposes, before and after, "treatment" and "control"
 - Assumption of parallel trends

 $y_{it} = \beta_0 + \beta_1 Post_t + \beta_2 Treat_i + \frac{\beta_3}{Post_t} XTreat_i + u_{it}$

Panel data methods

- First differences:
 - Measure impact of change in x on change in y!
 - Subtract out any time-invariant characteristics

- Fixed effects
 - Control specifically for individual/unit-specific effects!
 - Control specifically for timeinvariant effects
 - Still assume no omitted variables

$$y_{it} = \beta_0 + \beta_1 x_{it} + a_i + b_t + u_{it}$$

 $\Delta y_i = \beta_0 + \beta_1 \Delta x_i + u_i$

Instrumental variables

- Find an <u>instrument:</u> something that manipulates Y *only through* manipulating X
 - That is, corr(z,x)> 0 but corr(z,u) = 0!

Good instruments are...

- **Powerful:** (First stage F-stat > 10)
- **Excludable:** Not correlated with y directly
- **Exogenous:** Not correlated with other unobserved factors

Instrumental variables

• First stage

$$x_1 = \alpha_0 + \alpha_1 z + \alpha_2 x_2 + v$$

$$\mathbf{i}\widehat{x_1} = \widehat{\alpha_0} + \widehat{\alpha_1}z + \widehat{\alpha_2}x_2$$

- Second stage
 - $y = \beta_0 + \beta_1 \widehat{x_1} + \beta_2 x_2 + u$

- β_1 is causal impact of x on y among those who responded to z
 - Local average treatment effect
- Covariates (like x₂) can help meet our identification assumptions